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Abstract

Natural history collections play a vital  role in biodiversity research and conservation by

providing  a  window to  the  past.  The  usefulness  of  the  vast  amount  of  historical  data

depends on their quality, with correct taxonomic identifications being the most critical. The

identification of  many of  the objects of  natural  history collections,  however,  is  wanting,

doubtful or outdated. Providing correct identifications is difficult given the sheer number of

objects and the scarcity of expertise. Here we outline the construction of an ecosystem for

the collaborative development and exchange of image recognition algorithms designed to

support the identification of objects. Such an ecosystem will facilitate sharing taxonomic

expertise among institutions by offering image datasets that are correctly identified by their

in-house taxonomic experts. Together with openly accessible machine learning algorithms

and easy to use workbenches, this will  allow other institutes to train image recognition

algorithms and thereby compensate for the lacking expertise.
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Overview and background

Worldwide there are thousands of repositories housing natural history collections (Hobern

et al. 2020) which are aggregations of preserved (parts of) biological objects. Repositories

range  from  large  national  institutes  with  millions  of  specimens  stored  in  multistory

warehouses to smaller, sometimes privately owned collections. The importance of natural

history  collections  has  been  highlighted  from  different  angles  in  numerous  papers,

editorials or book chapters, for example by Suarez and Tsutsui (2004), Bakker et al. (2020)

‡ § § § |

§ §

©
. 

mailto:greeffm@ethz.ch


, National Academies of Sciences, Engineering, and Medicine (2020), or Raes et al. (2020)

. The primary types housed in these collections together with published descriptions form

the foundation of  binomial  nomenclature,  enabling the anchoring of  scientific  names to

verifiable  evidence.  Natural  history  collections  also  form  the  foundation  for  taxonomic

classification to determine taxonomic units, such as species and higher taxon boundaries

and  circumscription.  The  collections  themselves  become  increasingly  important  as

windows to the past which allow us to study the impact of the Anthropocene on biodiversity

(Meineke et al. 2018). The critical role natural history collections play in our society also

becomes evident from the steady flow of researchers visiting repositories and the large

number of research papers which use natural history collections as a primary source of

data with at present nearly three peer-reviewed articles relying on data from the Global

Biodiversity Information Facility GBIF being published every day (www.gbif.org/literature-

tracking). 

Taxonomic identifications guarantee collection accessibility 

To make full use of natural history collections, both their physical and digital visibility and

accessibility  are  crucial.  Physical  accessibility  is  linked  to  the  degree  of  management

applied to  collections (for  an overview of  collection management  levels,  see McGinley

(1993) or  Woodburn  et  al.  (2019)).  Besides  basic  requirements  such  as  climatic  and

sanitary conditions and ensuring minimal risks of damage, key requirements for physical

accessibility  are  the level  of  identification and a  transparent  classification system.  The

Linnaean style scientific name is a key element for both physical access to specimens and

online searches in biodiversity related research. Not surprisingly, the scientific name, often

through  the  accepted  taxon  name,  forms  the  central  entity  in  most  data  models  of

biodiversity information systems to which all  other information is linked. Because of the

crucial role a taxon name plays in providing access to biodiversity related information, the

quality of identifications that lead up to a taxon name is, or at least should be, equally

important.  

In  most  repositories,  collections  cover  large  parts  of  the  biodiversity  often  from  all

bioregions of the world. The larger the taxonomic and geographic scope of a collection the

more taxonomic expertise and working time is required for its identification. For quite a

while, however, there has been a trend for taxonomy to receive less and less attention in

the  curricula  of  universities,  and  positions  in  public  institutions  incorporating  traditional

taxonomy were filled with staff with no or only little taxonomic expertise. This trend, coined

the  taxonomic  impediment  (Hoagland  1996, Hopkins  and  Freckleton  2002),  led  to  a

diminution of taxonomic expertise available at repositories with natural history collections

and a decline in their capacity to properly identify newly acquired specimens and update

identification of existing specimens. 

Likewise, the degree of digital data capturing not only depends on capacity and funding but

to a large degree also on the systematic organization of a collection, which can only be

done if specimens have proper taxonomic identifications. In line with this, the Minimum

Standard for Digital Specimens (MIDS), which was developed for the Distributed System of

Scientific  Collections  DiSSCo  (www.dissco.eu;  Hardisty  et  al.  2020),  considers  the

2

http://www.gbif.org/literature-tracking
http://www.gbif.org/literature-tracking


taxonomic identification a basic requirement with regard to digitization priorities (Hardisty

2019).  Digitizing  unidentified  specimens  seems  hardly  useful  for  most  biodiversity

information usages other than taxonomy itself, and digitizing wrongly identified specimens

carries risk. As a result, digitization projects tend to focus on the well-sorted and thus well-

known organisms,  thereby neglecting large parts  of  collections and creating significant

shortcomings and biases in our understanding of the past and present biodiversity (Troudet

et al. 2017). 

Image recognition to the rescue 

As discussed in the previous sections, taxonomic knowledge is distributed very unevenly

and resources for taxonomic work are scarce. For many years, there have been calls for

collaboration  between  taxonomists  and  specialists  in  artificial  intelligence,  machine

learning,  and pattern recognition to develop automated systems capable of  conducting

high-throughput identification of biological specimens (Gaston and O'Neill 2004, MacLeod

et al. 2010, Wäldchen et al. 2018, Høye et al. 2021). Once trained, these systems learn to

distinguish objects and correctly classify them by deducing rules from a set of training data,

analogous to a human brain (Mitchell 1997). Image recognition is a powerful tool to reduce

the manual taxonomic workload and could be part of the solution. In this way, taxonomists

will be freed from repetitive work concerning common species and put their expertise to

optimal use. By using automated taxonomic identification systems, collections can upscale

both their available knowledge and the range of potential staff working in collections, be it

paid employees, untrained students or volunteers. 

Especially  in  the  context  of  national  and  international  digitization  initiatives  such  as

DiSSCo, the Integrated Digitized Biocollections iDigBio (www.idigbio.org, Matsunaga et al.

2013) or  the Swiss natural  history collections network SwissCollNet  (Frick et  al.  2019),

millions  of  images  will  be  created  on  the  one  hand,  and  taxonomic  expertise  will  be

necessary on the other hand. The ideal solution would be a machine learning solution

capable of identifying all known species of the world at a high accuracy. Existing solutions

such as  iNaturalist  (www.inaturalist.org)  or  Observation.org  (https://waarneming.nl/apps/

obsidentify) are aiming to identify all current living organisms, but they still have a strong

bias for certain organismal groups and rely on quality checks by a community of human

experts (Unger et al. 2020). Collection staff, however, have different needs. They want a

solution focused on specimens mounted in  a  fixed position often already organized in

taxonomic  groups,  for  example  by  class  or  order,  or  originating  from a  geographically

limited area. Compared to the current practice of sending specimens to specialists residing

in institutes around the world, identification by iNaturalist would already be a much faster

solution. Yet, iNaturalist still relies on a community of other users for verification which can

delay the final  identification by hours or days. For efficient sorting of large numbers of

specimens, collection staff therefore need identifications at a very high accuracy and within

seconds. In addition, collection staff often face opposite scenarios from uninformed nature

lovers in the field: they do not need identifications of the commonly observed taxa, but of

taxa that are less prominent in our everyday life, be it because of their lack of "beauty" or

their  secretive  lifestyle,  etc.  In  natural  history  collections,  such  taxa  might  exist  in

substantial  numbers  as  collectors  prefer  the  rare  and  hard  to  find  objects.  Image
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recognition tools trained on preferences of the average nature lover can be expected to

have a strong bias for the common and to score badly on the groups found in collections (

Valan 2021). 

Although  machine  learning  solutions  are  getting  ever  more  powerful  and  capable  of

identifying  diverse  objects,  a  single  universal  machine  learning  model  for  all  known

biological taxa is still technically challenging and costly. As a reasonable solution for the

time being, collection staff therefore need machine learning tools focusing on subsets of

biodiversity such as organisms from limited geographical areas and/or limited taxonomic

groups. For instance, machine learning models have been developed for British ground

beetle species (Hansen et  al.  2019),  for  Palearctic butterfly species (Dhall  et  al.  2020, 

Sunderland 2020), or for closely related families of mosses (Schuettpelz et al. 2017). The

authors stress that  AI  solutions are currently  still  in  their  initial  stages and need to be

treated with caution. There are many challenges such as incomplete sets of training data,

geographic  biases  in  collections  or  other  defects.  Nevertheless,  as  AI  solutions  are

currently improving at a tremendous rate, the authors believe this is the right time to start

integrating AI in collection management procedures and to learn from any initial obstacles. 

Automated identifications are transparent and reproducible 

Recent studies proved that machine identifications have become almost as accurate as

identifications done by human experts in quite a few groups (in benthic macroinvertebrates

(Ärje  et  al.  2020),  in  Diptera:  Chironomidae  (Milošević  et  al.  2020),  in  Diptera  and

Coleoptera (Valan et al. 2019), in dinoflagellates (Culverhouse et al. 2003)). Taxonomic

identifications  by  human  experts  do  not  necessarily  need  to  be  better  than  machine

identifications.  Diverse processes and a wide range of  people  may be involved in  the

identification of each specimen in a natural history collection. Given the crucial role correct

taxonomic  identifications  play  in  providing access  in  biodiversity  related  research,  one

should assume that a transparent evaluation system for identifications exists. Traditionally,

the quality of identifications is deduced from the name of the person who performed the

identification which is mentioned on an identification label. However, attaching identification

labels stating details on the determiner and the taxon is time consuming and often this is

omitted rendering the person and the provenance of the identification process obscure. As

identifications have been carried out routinely by collection staff ranging from technicians to

curators and by visiting naturalists ranging from early-stage novices to world specialists,

interpreting the quality of previous identifications is far from easy. A study by Freitas et al.

(2020) showed more than 23% of the Auchenipteridae fish records in GBIF (www.gbif.org; 

Edwards 2004) and in Brazil's SpeciesLink Network (www.splink.org.br) to have inaccurate

taxonomic  information  (this  can  include  everything  from  outdated  information  to

misidentifications). Similarly, Goodwin et al. (2015) evaluated 4,500 specimens of African

gingers from 40 herbaria in 21 countries and found 58% of the specimens to have wrong

names. 

In  contrast  to  identifications  done  by  human  experts,  machine  identifications  not  only

deliver taxonomic names, but also metadata about the probability of the determination, the

range of taxa considered, the version of the application, and other parameters. Machine
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determinations therefore are quantifiable,  transparent,  and reproducible by anyone (the

data  management  techniques  involved  fall  under  the  term  provenance  which  help

reproduce,  trace,  assess,  understand,  and  explain  models  and  how  they  were

constructed).  As  natural  history  collections  data  are  increasingly  used  in  statistical

modeling  of  environmental  changes  and  large  datasets  are  assembled  from  different

repositories, transparent identifications become ever more important (Souza et al. 2021). 

Objectives

An automated image recognition ecosystem 

The authors envision the establishment of a machine learning ecosystem for natural history

collections which allows the sharing of  existing models,  image datasets and know-how

between  institutions  and  collection  personnel.  An  avant-garde  of  a  few  experienced

institutions  shall  develop  the  necessary  core  modules  in  machine  learning,  which  can

easily be re-trained by other institutions to serve their individual needs. This ecosystem

should rest on four pillars: 

1. a central library of machine learning algorithms and associated applications

(e.g. mobile apps) 

2. a central  library  of  available expert  validated training datasets,  be it  the

images themselves or simply the information where to find these images 

3. a  digital  workbench  that  allows  even  inexperienced  users  to customize

existing machine learning solutions to their individual needs 

4. a user forum for the discussion of problems and the coordination of next

steps, for the evaluation, testing and implementation of novel technologies,

etc. 

Deep learning 

Feature extractor. Deep learning models (Szegedy et al. 2015, Guo et al. 2016), the most

popular  in  machine  learning  nowadays,  consist  of  several  parts,  two  of  which  are

particularly important in the present context: the feature extraction network (short: feature

extractor), which is sometimes also referred to as backbone, and the classifier. Well-known

examples  of  feature  extractor  networks  are  VGG  (Simonyan  and  Zisserman  2014),

Inception (Szegedy et al. 2016) and ResNet (He et al. 2016). The feature extractor is the

core of  any deep learning model  as it  recognizes features (properties)  in  the signal  it

analyses. In case of images, the feature extractor would recognize shapes, colors, patterns

etc. Feature extractors can readily be adapted to analyze other classes of objects as long

as these show similar features (Tajbakhsh et al. 2016). For instance, a feature extractor

trained on images of beetles can be used as well to identify images showing true bugs,

cockroaches, and other morphologically similar insects. Feature extractors will  therefore

rarely be trained de novo, but rather be recycled in various similar contexts. The training of

the feature extractor requires expert  IT-knowledge, computing facilities and time and is

usually done by bioinformaticians at larger institutions. An important development in recent

5



years represents the so-called task-independent feature extractor training, in which also

unlabeled  images  (e.g.,  images  with  unknown  taxonomy)  are  used  to  extract  useful

features.  Learning with  unlabeled images is  part  of  the  field  of  unsupervised machine

learning. A surge of recent papers (Chen et al. 2020, Caron et al. 2020) have shown that

using a large number (billions) of unlabeled images can reduce the number of  labeled

images needed to achieve high recognition accuracy. This opens the possibility of making

use of the large volumes of unlabeled material that are present in museum collections. 

Classifier. The feature extractor does not relate the resulting categories to explicit human

concepts such as animals, plants, or cars. For this, the machine learning model relies on a

classifier network, which associates the output of the feature extractor with names and

concepts (i.e., "classes"). In the natural history context, for instance, the classifier would

associate certain features with a family of plants, a species of beetle etc. Classifiers can be

easily (re)trained, with regard to time, computing power and experience of the user (e.g.,

see Valan et al. (2019) for a study in insect recognition). If for example a model existed for

the Brassicaceae of Northern America, a simple retraining of the classifier might suffice to

adapt  this  model  to  the  Brassicaceae  of  Europe.  This  so-called  transfer  learning  is  a

central deep learning concept that dramatically speeds up the training of new models and

often leads to performance improvements, such as higher identification accuracy (Yosinski

et al. 2014).  

Algorithms. Machine learning models make predictions and are trained in a particular way

and with a particular dataset as described above. Using models in practice often involves

additional functionality. The complete process from image(s) to identifications can generally

be described as an algorithm. Besides the models themselves, algorithms contain pre- and

post-processing functionality  that  cannot  be easily  fitted into  the model  formalism of  a

feature extractor and a classifier. An example of pre-processing is explicitly localizing the

organism in the picture before identification.  Examples of post-processing are combining

multiple  predictions  into  one  and  combining  image  recognition  models  with  species

distribution models. 

Central Library of Algorithms. To facilitate the exchange of these models and algorithms,

the authors suggest setting up a Central Library of Algorithms (Fig. 1). This library would

follow open data and open-source policies, provide search functionality, and allow other

institutions to use the models for automatic identification after they are made available

(deployed) through identification web services. For efficient utilization, the library should

offer  discovery  as  well  as  access  and  download  services,  a  performant  scalable

infrastructure, an API (application programming interface) supporting machine to machine

communication, and some tracking of use and accreditation services (DOIs). A comparable

library  or  repository  has  been  established  under  the  name  BioImage  Model  Zoo

(www.bioimage.io),  which offers community driven AI models for  the analysis of  mostly

cellular  images.  Setting  up  a  leaderboard  for  best  performing  feature  extractors  and

algorithms will  create an incentive for the generation of better training datasets and for

technological  improvements.  For  machine  learning  models  to  be  useful  in  the  daily

collection work, further accompanying applications and web services are necessary, which

could be shared on the central  library as well.  They offer  user  interfaces to apply  the
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models and allow, for instance, accessing the camera and image gallery of the mobile

device, cropping the images, and uploading them to the machine learning model as well as

displaying the results.  

Central Library of Datasets 

Further sharing of taxonomic knowledge would be provided through a Central Library of

Datasets. This library would be a system to access a collection of public image datasets for

images that are suitable for supporting large-scale centralized training of feature extractors

and local training of classifiers at the individual institutions (Fig. 2). As in the Central Library

of Algorithms, this library should offer various services for users, a scalable infrastructure

with interfaces and tracking functionalities. For biodiversity images, datasets may be found

on GBIF and/or iDigBio. Repositories with a more general focus might be the Research

Data Alliance (Parsons 2013) or the European Open Science Cloud (www.eosc-portal.eu).

In the area of machine learning, the online community of data scientists often share their

datasets on Kaggle (www.kaggle.com). With so many collections digitizing their holdings

worldwide, the number of images of specimens is growing at an impressive rate (Tegelberg

et  al.  2014).  However,  not  all  images are  appropriate  for  training  as  many collections

digitize their holdings without prior verification of the taxonomic identifications. Using these

images could decrease the quality  of  the model  but  can still  be used in  unsupervised

learning (Chen et al. 2020, Caron et al. 2020). The authors therefore suggest establishing

a  Central  Library  of  Datasets  to  access  specimen  images  with  high  confidence

identifications. 

The uploaded images shall be collected in a dataset, in this context defined as a fixed

curated list of images with additional metadata such as the name of the taxon, geographic

coordinates and information on the probability of the identification. The Central Library of

Datasets will reference existing public datasets such as GBIF and/or iDigBio. Over time,

this can encourage collection staff and collection users to generate and publish their own

datasets  on  public  portals,  possibly  remedying  biases  and  shortcomings  in  existing

datasets (this could be done as 'data papers', see Chavan and Penev (2011)or Costello et

al. (2013)). To this end, it is necessary that relevant criteria for images to qualify for training

data are defined. At the BioDiversity_Next conference in Leiden in 2019 for instance, the

association  'Biodiversity  Information  Standards  TDWG'  (www.tdwg.org)  initiated  the

discussion on establishing a 'Deep Learning Standards Interest Group', which could take

over this task. In general, the generation of interoperable training datasets will be greatly

facilitated if collections start to adopt standards in all areas. The new Catalogue of Life, for

example,  aims to provide an authoritative nomenclature and taxonomic foundation that

could function as a clearinghouse covering all scientific names of biological taxa worldwide

and allows for seamless data exchange between institutions following this standard (www.c

atalogueoflife.org, Bánki et al. 2018). With regard to the accuracy of taxonomic metadata,

the  quality  of  initial  identifications  done  by  human  experts  will  be  relevant.  The

quantification of expert knowledge as suggested by Caley et al. (2013) could prove to be a

feasible solution and be used for algorithms that aggregate information and annotations (

Simpson and Roberts 2015) or simply as part of one single set of criteria to define the

confidence level of identifications. 
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Digital workbench 

Retraining an existing model to a new group of organisms is easy – for IT specialists. The

average collection manager would most likely struggle with the necessary procedures. The

authors therefore propose the establishment of a digital workbench for machine learning

(e.g., Google AutoML, Microsoft Azure), which allows non-experts to curate datasets (e.g.,

completing  taxonomic  or  geographic  information)  and  retrain  existing  models  for  their

individual purposes. Ideally, the workbench should have a graphical user interface. Users

could import existing feature extractors and further algorithms from the Central Library of

Algorithms, and training data from the Central Library of Datasets (Fig. 3). The training of

the model could be started with a few clicks, and in the end the workbench would provide a

standardized evaluation of the new model informing about the accuracy and about further

relevant  performance  indicators.  When  the  performance  is  sufficient,  the  collection

manager imports the algorithm into a mobile app or a web service, and finally may even

publish it again to the Central Library of Algorithms for others to use. 

User forum  

Critical readers might consider this vision too idealistic. And it is true, for everything to work

properly, many prerequisites just need to be right: a feature extractor needs to be available,

appropriate  images  need  to  exist,  the  workbench  and  the  applications  need  to  work

flawlessly. The authors therefore propose a further measure: the establishment of a user

forum. On this forum, users can post their wishes, discuss shortcomings, and interact with

more experienced institutions and providers of machine learning solutions. The user forum

should thus serve as a marketplace where collection managers search for technological

expertise and assistance and in return offer image datasets and taxonomic expertise. As a

result, this user forum should guarantee that over time well identified image datasets and

machine learning models become available for most groups of organisms, as well those

that have been neglected so far.  In addition, this will  be the place to discuss and find

strategies for shortcomings of the AI solutions related to inherent collection biases, be they

geographical, cultural, taxonomical or other. 

Use Cases

Accessing  unsorted  collection  holdings.  Most  collections  accumulate  considerable

holdings of biological specimens which remain unidentified due to a lack of time or in-

house taxonomic expertise. These specimens may be stored as singletons or as groups in

boxes,  either  preliminarily  sorted  by  higher  taxonomic  groupings  (order,  family)  or  by

geographic region, or they may be completely mixed. In recent years, especially larger

institutions have therefore started to database their holdings at the storage unit level (i.e.,

by  the  units  in  which  specimens  are  stored,  like  drawers,  jars,  or  boxes).  In  insect

collections,  for  instance,  whole  drawers are  being  imaged and  published  online  to  be

browsed through by the entomological community (Olsen 2015, Mantle et al. 2012). In this

setting, machine learning applications could follow the image capturing step by splitting the

image into segments, each of which features an individual specimen (Fig. 4).
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Machine  learning  applications  would  then  recognize  the  taxonomic  identity  of  each

specimen  (Table  1).  And  finally,  the  collection  staff  can  add  this  information  to  the

corresponding specimen on the image, either physically using identification labels and/or

digitally  in  the  object  level  registration.  As  a  result,  users  will  be  able  to  search  for

taxonomic information of individual specimens rather than of whole drawers, and collection

staff will be able to efficiently sort and integrate these specimens into their main collection

(Fig. 5). 

Transparent identifications in mass digitization. Bringing down costs and time spent

per treated item is of paramount importance when digitizing natural history collections (

Blagoderov  et  al.  2012).  In  addition  to  introducing  industrial  style  processes  such  as

conveyor belts or division of labor, and recruiting volunteer workers, costs are often cut by

omitting expensive work steps.  In particular,  natural  history institutions rarely verify  the

taxonomic  identifications  of  specimens  prior  to  databasing  (Scoble  2010,  Oever  and

Gofferje 2012). If specimens are imaged, image recognition applications offer cheap and

scalable means to improve data quality (Fig. 6). Importantly, the recognition step can be

repeated at  any given point  in  time,  thus allowing not  only  for  verification of  the past

identification by humans,  but  also for  regular  updates of  machine identifications in  the

future. When a taxon is split or synonymized, for instance, the algorithm would change the

taxonomic identity of the specimen in the collection management system and inform the

collection manager about necessary changes in the physical collection.

Challenges ahead

A decade ago, the idea of using image recognition to share taxonomic knowledge between

natural history collections would have seemed far-fetched. From a technical point of view

this is no longer the case as is demonstrated by widely used field apps like iNaturalist,

ObsIdentify (Schermer and Hogeweg 2018) or PlantNet (Goëau et al. 2011, Goëau et al.

2012). Based on expert validation, these apps have taken their place among traditional

field guides and even started to replace the role of experts in identifying common species

observed  outdoors.  The  challenges  for  the  large-scale  use  of  image  recognition  in

collections  as  described  in  this  paper  are  primarily  organizational  and  concern

standardization, coordination, (re-)use of existing and development of new infrastructure

components,  and  rallying  a  community  of  contributors  and  users.  The  premise  of  the

outlined  proposal  is  that  collections  of  all  sorts  and  sizes  can  have  a  streamlined

collaboration. 

Algorithms. Even though most challenges ahead are organizational, machine learning still

harbors some technical challenges of its own (e.g., Høye et al. 2021). One of them is that

identifications  will  not  always  be  correct.  Incorrect  identifications  with  a  low computed

probability are relatively easy to address; they can be either discarded or the probability

can be recorded along with the identification in a collection management system for future

reference. Incorrect identifications with a high computed probability are a bigger problem. It

can have multiple causes (Nguyen et al. 2015, Hein et al. 2019), but it occurs mainly when

the dataset used to train the model differs significantly from the dataset that needs to be

9



identified. For example, the method of preparation can be different between collections

(e.g., open vs closed butterfly wings), the true taxon of a specimen being identified is not

part of the original training database or there are taxa in which the distinction between

species  is  quite  difficult  because  of  the  range  in  biological  variation.  Without  special

measures, the output of  the algorithm can be unpredictable. This so-called open world

issue is well known in machine learning (Bendale and Boult 2016, Geng et al. 2021), but

further study is needed to understand the difference between aleatoric (due to noise) and

epistimic  (due  to  lack  of  data)  uncertainty  in  biodiversity  machine  learning  models  (

Hüllermeier and Waegeman 2021).

Standardization. One organizational endeavor is to further standardize and accelerate the

digitization of natural history collections, ensuring that the images and metadata can be

readily applied for image recognition. This applies to both taxonomical and geographical

annotations. Even when no larger infrastructure as envisioned in this paper is built, this

step is worthwhile and should be addressed by or in close collaboration with TDWG (

Wieczorek et al. 2012, Morris et al. 2013). It is of equal importance that the output of the

models  is  standardized,  considering  aspects  of  accuracy  and  information  about  taxa

included. It should be legible by faunistic databases, analogous to BibTeX in libraries (www

.bibtex.org),  as well  as by the wide variety of  collection management systems used in

collections. As with manual identifications, it is necessary to record the identifier. Therefore,

a  commonly  accepted  and  quotable  versioning  and  provenance  system  for  machine

learning is necessary.

Infrastructure.  Another  challenge is  the ownership and responsibility  for  the proposed

ecosystem. Initially, one or several larger natural history institutions will  need to build a

large-scale digital infrastructure to allow for the generation, exchange, and application of

image recognition models, as well as to provide a platform for a community to engage with

one another.  The different  modules of  the infrastructure can be developed by different

parties. In addition, the different modules could be a combination of the repurposing of

existing  infrastructure  components  and  tools  and  newly  developed  ones.  Recently,  a

landscape and gap analysis on the automated services, tools, and workflows for extracting

information from images of natural  history specimens and their  labels was performed (

Walton et  al.  2020).  One could  envision a  similar  exercise  for  the proposed modules.

Collaborations between existing infrastructures like GBIF, Catalogue of Life, Zenodo (https:

//zenodo.org) amongst others, and initiatives such as DiSSCo and iDigBio could provide a

framework for the repurpose of existing tooling and infrastructure components and newly

developed ones. Having a standardized framework for storing and evaluating algorithms on

well described datasets also provides the opportunity for the machine learning research

community to compete on creating the best models in the form of challenges (Joly et al.

2020, Little et al.  2020). In the end, all  modules need to fit and work together and be

actively  and  sustainably  maintained.  The  initial  development  can  probably  only  be

achieved through a grant from a national or international science foundation. 

Once built, the viability of the machine learning ecosystem for collections depends on the

level of contribution from its participants. Collection managers and curators would need to

actively  focus  their  capacities  at  collaborating  with  experts  to  identify  and  digitize
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collections,  resulting  in  taxonomically  validated  and  properly  annotated  images.  Once

shared,  they can be used to  (re)train  image recognition models  and benefit  the entire

community. Especially in the initial phase this will require a level of altruism, as contributing

will take time and resources while the benefits will only become clear after a few years.

The  concept  of  give  and  take requires  momentum  and  should  be  stimulated  by  the

collections maintaining the infrastructure,  ideally  utilizing already existing cross-national

collaborations for mobilizing collections and knowledge. Parallels of such a community-

driven approach can be found in the Barcode of Life project (www.barcodinglife.org), which

allows the exchange of DNA-barcodes between institutes, or OpenML (Vanschoren et al.

2014), which facilitates the exchange and analysis of large datasets.
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Figure 1.  

In  the  Central  Library  of  Algorithms,  natural  history  collection  staff  will  select  algorithms

(feature extractors, models, etc.) that are most appropriate for the identification of their target

organisms and add them to the workbench. The current figure shows a mock-up.
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Figure 2.  

In the Central Library of Datasets, natural history collection staff will find correctly identified

images  of  their  target  organisms  and  download  the  data  for  training  of  an  individually

customized  classifier  (photos:  Lepidoptera  by  Entomological  Collection  of  ETH  Zürich;

Orthoptera  by  Naturalis  Biodiversity  Center;  Brassicaceae  by  United  Herbaria  Z+ZT,

ZT-00164967, ZT-00167494, ZT-00171530, CC BY-SA 4.0). The current figure shows a mock-

up.
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Figure 3.  

Sharing of taxonomic knowledge between institutes. (1) Each algorithm contains two basic

components: the feature extractor and the classifier. (2) The Central Library of Datasets allows

the user to browse through all available images of collection objects; (3) based on all available

images, a regularly updated central  feature extractor is created and published; (4) custom

made algorithms can relatively easily be created by building a classifier based on a selection

of taxa from the central library and combining this with the central feature extractor; (5) newly

created algorithms together  with  their  metadata  (probability  &  information on content)  are

published through a web service in the Central Library of Algorithms (6) and can be used

through the Identification web services (API) either for batch processing of images or through

a mobile app. Models can be easily extended by other institutions by combining data sources

(7).
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Figure 4.  

Algorithms  recognize  and  number  individual  specimens  in  a  drawer  of  unsorted  items.

The insect drawer is from the Oxford University Museum of Natural History. The current figure

shows a mock-up.
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Figure 5.  

Non-expert collection staff easily find and afterwards sort specimens by taxon (line color) and

by accuracy of the identification (line type). The insect drawer is from the Oxford University

Museum of Natural History. The current figure shows a mock-up.
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Figure 6.  

Mock-up  of  an  interface  for  automated  taxon  identification.  Naturalis  holds  over  500.000

specimens of unmounted, unsorted and often unidentified, papered butterflies and moths that

were collected mostly in Europe and Asia over the past 200 years. In early 2016, Naturalis

embarked  on  a  10-year-project  to  digitally  identify  all  these  specimens  with  the  help  of

dedicated volunteers (Caspers et al.  2019).  Specimens are unpacked, photographed, had

their  label  data  registered  and  then  repacked,  still  unmounted,  for  long-term  storage.

Specimen images were then dragged and dropped into a web-based interface to get a near-

instant response with multiple predictions about the taxonomic identity including probability

values.
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Drawer number Specimen number Family Subfamily Probability

BE.2286032 1 Tettigoniidae Conocephalinae 95%

BE.2286032 2 Tettigoniidae Pseudophyllinae 85%

BE.2286032 3 Tettigoniidae Pseudophyllinae 95%

... ... ... ... ...

Table 1. 

Automated recognition applications identify the specimens to lower taxonomic levels and inform

about the probability of the identifications.
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