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Abstract

Globally, thousands of institutions house nearly three billion scientific collections offering

unparallelled resources that contribute to both science and society. For herbaria alone -

facilities housing dried plant collections - there are over 3,000 herbaria worldwide with an

estimated  350  million  specimens  that  have  been  collected  over  the  past  four

centuries. Digitisation  has  greatly  enhanced  the  use of  herbarium  data  in  scientific

research,  impacting  diverse  research  areas,  including  biodiversity  informatics,  global

climate  change,  analyses  using  next-generation  sequencing  technologies  and  many

others.  Despite  the  entrance  of  herbaria  into  a  new  era  with  enhanced  scientific,

educational and societal relevance, museum specimens remain underused. Natural history

museums can enhance learning and engagement in science, particularly for school-age
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and  undergraduate students.  Here,  we  outline  a  novel  approach  of  a  natural  history

museum  using  touchscreen  technology  that  formed  part  of  an  interactive  kiosk  in  a

temporary museum exhibit on biological specimens. We provide some preliminary analysis

investigating  the  efficacy  of  the  tool,  based  on  the  Zooniverse  platform,  in  an  exhibit

environment to engage patrons in the collection of biological data. We conclude there is

great potential in using crowd‐sourced science, coupled with online technology to unlock

data and information from digital images of natural history specimens themselves. Sixty

percent of the records generated by community scientists (citizen scientists) were of high

enough quality to be utilised by researchers. All age groups produced valid, high quality

data  that  could  be used by researchers,  including children (10 and under),  teens and

adults. Significantly, the paper outlines the implementation of experiential learning through

an undergraduate mathematics course that focuses on projects with actual data to gain a

deep, practical knowledge of the subject,  including observations, the collection of data,

analysis  and  problem  solving. We  here  promote  an  intergenerational  model  including

children, high school students, undergraduate students, early career scientists and senior

scientists, combining experiential learning, museum patrons, researchers and data derived

from natural history collections. Natural history museums with their dual remit of education

and  collections-based  research  can  play  a  significant  role  in  the  field  of   community

engagement and people-powered research. There also remains much to investigate on the

use of interactive displays to help learners interpret and appreciate authentic research. We

conclude with a brief insight into the next phase of our ongoing people-powered research

activities developed and designed by high school students using the Zooniverse platform.
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Introduction

Globally, thousands of institutions house nearly three billion scientific collections, each of

which can have multiple layers of associated metadata (Holmes et al. 2016, Sweeney et al.

2018).  Extensive,  professionally-managed  natural  history  collections,  with  their  broad

taxonomic, geographic and temporal scope, offer unparallelled resources that contribute to

both  science  and  society  (e.g.  Graham et  al.  2004,  Berendsohn  and  Seltmann  2010, 

Hedrick  et  al.  2019).  Digitisation  has  greatly  enhanced  the  use  of  herbarium  data  in

scientific  research,  impacting  diverse research areas,  including biodiversity  informatics,

global change biology, analyses using next-generation sequencing technologies and many

others (Bebber et al. 2010, Heberling and Isaac 2017, James et al. 2018, Soltis et al. 2018,

Lang et al. 2019. Digitisation of specimen records and their associated data will provide

unparallelled  educational  resources  that  can  be  tailored  to  diverse  audiences  (e.g.

professional scientists, students- biology majors and non-majors and the general public (

Cook et al. 2014)). Natural history museums can enhance learning and engagement in
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science, particularly for school-age students. Recently, we reported the use of an online

web-based tool using a crowd-sourced model that produces quality taxonomic datasets

and enriches engagement through real contributions to science (von Konrat et al.  2018

). Here,  we  outline  a  novel  approach  of  a  natural  history  museum using  touchscreen

technology  that  formed  part  of  an  interactive  kiosk  in  the  temporary  museum  exhibit

Specimens: Unlocking the Secrets of Life (Field Museum 2016). Participation in authentic

research experiences is an important component in moving youth towards engaging in

meaningful  scientific  thinking  and  preparing  them to  enter  a  modern  workforce  where

STEM plays a central role (National Research Council 2010). We provide some preliminary

analysis investigating the efficacy of the tool in an exhibit environment to engage patrons in

the collection of biological data. Significantly, we demonstrate the collaborative role that

experiential learning played in this process for university students. From 2020 through to

2021,  a group of  mathematics,  actuarial  science,  data analytics and computer  science

students from Roosevelt University, Chicago, U.S.A. worked on data cleaning, processing

and analysis for this project. This was completed during the course, Industrial Applications

of Mathematics at Roosevelt University; this course was developed in conjunction with the

Preparing  for  Industrial  Careers  in  Math  (PICMath)  programme (MAA 2021).  Both  this

course  and  the  PICMath  programme  seek  to  give  students  an  authentic  experiential

learning experience involving real problems in order to prepare them for future careers in

mathematics,  actuarial  science  and  data  analysis.  Experiential  learning  consists

of contextually  rich concrete  experience, critical reflective  observation, contextual-

specific abstract  conceptualisation  and  pragmatic  active  experimentation  (Morris  2019).

Working  with  real  data  introduces  a  variety  of  technical  challenges;  overcoming  these

provides a firm grounding for students in their future careers (Dorff  and Weekes 2019).

Much  like  a  direct  experience,  analysing  real  specimens  gives  an  enhanced  learning

experience  to museum patrons  and  experiential  learning  courses  involving  community

partners are a high impact  educational  practice (Kuh 2008).  By engaging the public  in

measuring the specimens, having biology interns observe and report on the measuring

process and having university students perform the data analysis on these, the project

ceases  to  be  simply  a  scientific  analysis  and  instead  becomes  a  true  community

endeavour. There was broad participation across a range of ages, career stages/paths and

disciplines. We conclude there is great potential in using crowd‐sourced science, coupled

with online technology to unlock data and information from digital images of natural history

specimens  themselves.  Significantly,  this  provides  an  ongoing  opportunity  for  student

growth through experiential learning. Throughout this project, we recognise the valuable

contributions  of  all  participants  to  both  the  data  and  the  analysis.  Large  projects  that

involve crowd-sourced science or  participatory science are often referred to  as 'citizen

science' (Eitzel et al. 2017). Recently there has been a lot of discussion and debate that

this term is not inclusive (e.g. Heigl et al. (2019), Auerbach et al. (2019)). Throughout the

manuscript  we  use  the  words  'people-powered  research'  and  'community  science'

interchangeably in order to emphasise the key role of the community - including students,

museum patrons, faculty and scientists.  We also use the phrases 'community scientist'

and 'participants' to refer to the museum patrons who generated data. Defining these terms

and indicating alternative terms to 'citizen science' follow recommendations and strategies

promoted by Eitzel  et  al.  (2017) in order to avoid confusion. We acknowledge that  this
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differs  from many  uses  of  the  phrase  'community  science' which  instead  emphasise

scientific questions which originate in the community itself (Pandya 2019).

Objectives

We wanted to apply and develop the statistical  and computational  expertise of  college

students to determine the scientific quality of data generated by museum patrons.

Specifically, our objectives are to determine the following:

1. Are the general public able to provide usable real data?

2. To what scale is real usable data generated (i.e. over 70%, for example)?

3. To what scale can different age groups (demographics) generate usable data?

4. Is  there a  difference in  the setting of  the kiosk -  i.e.  one where a  facilitator  is

available (in the Science Hub) versus non-facilitated (in the Specimens exhibit)?

5. To explore the effectiveness of public participation in a museum setting.

We also seek to demonstrate how this exercise was driven by student work in a formal

class setting.  Although this  was part  of  an industrial  mathematics course at  Roosevelt

University,  this  type  of  university  and  museum  collaboration  could  be  replicated  by

partnerships between educators and museums seeking to work with community-generated

data on a large scale. An underlying goal,  as demonstrated below, was for  students to

develop a series of publicly accessible computational tools for data curation, validation and

analysis.

History of the collaboration

Herbaria are reservoirs of both well‐documented specimens and undescribed diversity (

Bebber et al. 2010). New species are described each year from specimens that have been

housed in collections for decades, if not centuries. However, the pace of such discovery is

slow,  especially  for  non‐angiosperms  and  accelerating  the  process  of  discovery  is

expensive  (Soltis  et  al.  2018). In  order  to  help  overcome  this, Field  Museum  began

partnering with educational institutions in the greater Chicago area in 2012, developing the

MicroPlant project  where  students  and  the  general  public  would  generate  data  as

community scientists aiding taxonomists (von Konrat 2012). There were many benefits,

especially connecting natural history collections to education. Students, in particular, would

have a hands-on experience where they could contribute to scientific discovery in a way

that could be used in introductory biology courses as well as K-12 settings. Teachers who

were not  experts  in  botany  or  the  life  sciences could  easily  incorporate  this  into  their

courses.  Our  group  provided  an  outline describing a  model  of  a  crowd-sourced  data

collection  project  that  produces  quality  taxonomic  datasets  and  empowers  community

scientists through real contributions to science (von Konrat et al. 2018). The project is an

ongoing collaboration  amongst  taxonomists,  community  science  experts, teachers  and
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students  from both  universities  and  K–12. Scientists,  who  have  more  specimens  than

taxonomists can measure or observe, in this case, could use these student measurements

to  accelerate  the  pace  of  discovery.  As  a  result  of  meetings  between  Field  Museum

scientists, faculties from many institutions, students and community scientist experts, an

online web-based version was developed for the Zooniverse platform (Zooniverse 2021b).

Classes  could  meet  in  a  computer  lab  at  their  home  institutions  and  generate

measurement  data contributing  to  authentic  research.  The  project  became  surprisingly

popular receiving media attention (e.g. Cimons 2018, Ruppenthal 2018) and, in 2017, had

over  11,000  participants  who  generated  almost  100,000  measurements. As  data  were

collected, it became clear that due to the size and complexity of a real unculled dataset, it

would  need  to  be  cleaned  and  analysed  using  more  advanced  techniques  and  semi-

automated tools and so collaborations with the mathematics faculty occurred. An analysis

of the web data showed excellent results (von Konrat et al. 2018) and an updated version

of  the project  involving new images was created for  a touchscreen kiosk for  the Field

Museum. This kiosk differed from the classroom setting not only because there was no

instructor assistance for data collection, only an explanatory walk through via an optional

onscreen tutorial, but also in its physical setting. The question of whether this new interface

would lead to a usable dataset remained.

Materials and methods

Outlined below are the process and methodology including development of the kiosk, data

collection, data analysis and data validation. All data were taken in units of pixels and, for

simplicity of presentation, we present results in units of pixels; however, the images were

consistently scaled so that pixels can be converted into microns via the conversion 1 pixel

= 1.05 microns.

Experiential learning and interdisciplinary science 

Experiential learning foregrounds the crucial role experience takes in the learning process (

Kolb et al. 2014). According to Kolb (1984), learning involves four cyclical stages; concrete

experience, reflective observation, abstract conceptualisation and active experimentation.

A  strong  experiential  learning  experience  in  data  analysis  involves  a  set  of  real  data,

questions  of  interest  to  the  partner  and  domain  knowledge  for  the  data.  All  of  these

elements  require  an  ongoing  communication  between  the  mathematics  students  and

scientists. Interactions between biologists and maths students occurred in the 2020 and

2021 Industrial Applications of Mathematics class at Roosevelt University. Biologists visited

the class, at the start of the semester in person and regularly on Zoom, to present the

overarching  project,  raw  datasets  of  both  measurements  and  demographics,  the

discoveries so far and background information. Students problem-solved to determine how

to process the data, validate and improve upon initial processing and cleaning and analyse

the  data.  The  biologists  joined  the  class  every  few  weeks  to  both  pose  and  answer

questions about the data, kiosk set up and the biological underpinnings. Complimenting the

experiential  learning  model,  the  students  engaged  in  interdisciplinary collaborative
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community science experience where they worked along with the scientists to unpack raw

data, reflect on the data, think about the data and act on how to apply these data in a

meaningful way for stakeholders. For over a decade, the need to accelerate the adoption

of interdisciplinary approaches has been recognised in an era of vast datasets (Derrick et

al. 2011). The biologists were also able to help focus the research in a direction that was

most meaningful for their needs. In a typical semester, students would visit the museum,

interact with scientists and gain exposure to scientific natural history collections in order to

put the science and industrial questions into context. However, due to the global pandemic,

this  was  achieved  remotely  and  virtually, helping the  students  to  understand  the

experimental set up and to pose relevant data questions. At the end of the spring 2020

section of the course, many questions about selected images were answered, but others

about the large-scale dataset remained. There was some student work on the project over

the summer and then in spring 2021, the second group of mathematics students worked

intensively with this dataset and biologists to expand upon the previous student work and

complete the data analysis.

Research organism and biological context

The  MicroPlant project  focuses  on  a  group  of  early  land  plants  often  referred  to  as

bryophytes.  Bryophytes,  including  mosses,  liverworts  and  hornworts,  are  the  second

largest group of land plants after flowering plants and are pivotal in our understanding of

early land plant evolution (e.g. Ligrone et al. 2012, Zhang et al. 2020). Bryophytes play a

significant ecological role including CO  exchange (DeLucia et al. 2003), plant succession (

Cremer  and  Mount  1965),  production  and  phytomass  (Frahm 2008),  nutrient  cycling  (

Coxson 1991) and water retention (Pócs 1980). Bryophytes, together with lichens, serve as

the “macrophytes,” providing a matrix where many microscopic organisms live, including

tardigrades,  mites,  rotifers,  micro-molluscs,  microalgae,  microfungi  and  prokaryotes  (

Gerson  1982,  Huttunen  et  al.  2017).  For  the  MicroPlants  project,  we  focused  on  the

liverwort genus Frullania (Fig. 1). This genus has a worldwide distribution and is one of the

largest and taxonomically most complex genera of leafy liverworts with more than 2,000

published names (Hentschel et al. 2015). Specifically, participants were asked to measure

a modified leaf or lobule (Fig. 1), from digitally rendered images.

Development and description of the kiosk

Given the success of the web-based MicroPlant project on Zooniverse, the Field Museum

adapted the measurement tool to a touchscreen kiosk which was first used in the exhibit

Specimens: Unlocking the Secrets of Life of the Field Museum. This was a special exhibit

which ran from 10 March 2017, through to 7 January 2018 showcasing the museum's

collection  of  over  30  million  specimens  and their  ongoing  scientific  potential.  Museum

patrons, who had just viewed many of the typically hidden scientific specimens, were able

to interact with digitised versions of liverwort specimens on the kiosk so that they too could

contribute to scientific discovery (Fig. 2).

2
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After the Specimens exhibit closed, the kiosk was updated to include a survey question

about the participant's age group. The kiosk then became one of the rotating exhibits in the

Grainger Science Hub (Field Museum 2021) where it was used in 2018. After it was retired

from the Science Hub, it made appearances at Field Museum Member Nights and at ad

hoc events.

Data collection from kiosk

Initially, the kiosk was located in the Specimens: Unlocking the Secrets of Life exhibit at the

Field Museum. For this phase of data collection, the general  public interacted with the

kiosk, viewing a brief  instructional demonstration which was programmed into the kiosk

that showed them an animation of how to measure the length and width of lobules along

with the need for these line segments to be perpendicular. They then viewed a randomly

displayed MicroPlant  image.  The  image  contained  a  stem of  the  plant  with  a  various

number  of  lobules,  typically  between  1  and  10  lobules  (Fig.  1),  which  participants

would measure using the touchscreen (Fig. 2). During the course of 24 days in 2017, staff,

students and volunteers unobtrusively observed and collected demographics on who was

using  the  touchscreen.  Later,  these  were  matched  with  the  corresponding  kiosk

measurements in the data processing phase.

As  these  demographic  observations  were  labour  intensive,  there  was  a  desire  for

participants to self-classify their demographics; this would also increase accuracy. When

the kiosk moved to the Science Hub in 2018, it included a brief demographic survey for

participants to fill out. This survey allowed participants to pick one category or to skip the

question.  However,  the  survey  did  not  automatically  reset  between  each

participant. Demographic  information  was  collected  over  a  48-day  period  in 2018.  The

demographic results were saved separately from the kiosk lobule measurements and these

files were matched in the data processing phase (Table 1).

Initial data processing

Students in the 2020 and 2021 Industrial Applications of Mathematics course at Roosevelt

University were tasked to clean and analyse data generated by museum participants and

demographic data collected by interns (Fig. 3).

Pre-processing of crowd-sourced data

Any time a person presses the submit button on the kiosk, the kiosk records the data

and transfers the image measurements to a comma-separated variable (csv) file.  Each

image was labelled with a unique subject identification number for ease of analysis. In the

csv file, each submission receives its own line whether it has measurements or not. The

csv file includes the image ID, x and y coordinates, timestamp, degree of angles and other

information, in a json format. There will be multiple measurements for each image because

the kiosk displays each image on multiple occasions. Each time a measurement on an

image is completed, a new data line is added to the csv file. For example, if a particular
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image was measured ten times, the csv file will add a new line per new measurement for a

total of ten separate lines. Using the scripting language PowerShell, we performed an initial

extraction and cleaning of the data which removed unnecessary notation, such as added

parenthesis or instructional notes and made a clean csv file which could be used for data

analysis.

There was a second set of demographic information for data collected in the Science Hub

in 2018 and data collected in the Specimens exhibit  in 2017. For the 2018 data, these

demographic records were recorded on the kiosk itself by museum patrons. For the 2017

data, these records were recorded by a set of interns who observed museum patrons using

the  kiosk.  Each  of  these  was  matched  to  the  line  segment  data  from  the  kiosk

using timestamps via Excel VBA. This matching process was verified for samples of the

data to guarantee computational accuracy. The initial matched dataset, without cleaning,

will be considered all data. All data include anything that was submitted through the kiosk

by pressing the submit button along with the associated demographic information.

Data cleaning

Once  the  measurement  and  demographic  data  were  aligned  into  a  single  file,  it  was

important  to  extract  the  measurements  involving  intersecting  pairs  of  line  segments.

Missing  data  are  data  missing  one  or  two  lines  of  measurements.  For  example,

someone could have pressed the submit button without taking any measurements. Another

scenario, someone could have tapped the screen leaving only one line as a measurement

and then pressed the submit button. Invalid data are data with any measurements of two or

more lines that do not intersect. Potentially valid data are any data with an intersecting pair

of  lines  regardless  of  location  on  screen.  Once  this  initial  data  parsing  process  was

done and the data were cleaned so that all invalid data were removed, we performed some

manual checks to verify the accuracy of the initial cleaning process. This stage of the data

processing is objective; there are no judgements that needed to be made about the quality.

It  resulted in  an excel  file  where each row in  the excel  file  corresponded to a pair  of

intersecting  line  measurements  along  with  the  corresponding  image  and  demographic

information. We also kept a record of the submitted measurements that had only invalid

measurements in order to determine the percentages of high quality data that came from

each demographic category.

Advanced data cleaning

Once the data was split into a csv file where each row corresponded to a unique pair of

intersecting lines, it was necessary to determine which data were of sufficiently high quality

to use. As the kiosk specified that pairs of line segments should intersect at 90 degree

angles (see Fig. 2), an initial cut was made to all data based on the angle measured. Good

data are any data with an intersecting pair of lines that have an angle 80 degrees or above.

Note that the kiosk records the smaller angle that occurs between the line segments; thus,

if a pair of line segments intersect with smaller angles of 85 degrees and larger angles of

95  degrees,  the  dataset  only  records  the  85  degree  angles.  This  means  that  the
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maximum angle  measurement  possible  is  90  degrees. We  analyzed one  image  in

detail, comparing measurements created by the public to a set of measurements created

by an  expert. This  led  to  a  second  set  of  cuts  using  the  interquartile  range  (IQR)

independently for each axis to remove outliers (Zwillinger and Kokoska 2000). To calculate

the IQR cut for  each axis,  we first  split  the dataset into quartiles (Q = min ,Q , Q =

median, Q , Q = max) and set IQR = Q -Q . We keep all data that are in the range from Q

-1.5*IQR to Q +1.5*IQR (Table 2).

Determining an appropriate cutting schema using expert measurements

The images were measured by experts in order to test the validity and quality of data. In

order  to  determine the  best  way to  find  accurate  lobule measurements  from the  data,

we plotted data gathered from the public from one of these images (ID No. 8735482) along

with expert measurements of the same image to see how accurate the angle cuts were.

We used this first image to guide our cleaning process and then, after we determined the

process, we verified it with a second image. Our goal is to have a set of cuts that leaves us

with public data that give the same axis lengths as do the expert data. We assumed that

images that contained multiple lobules from the same specimen would have near identical

sizes  for  those  lobules;  this  meant  we  would  be  able  to  use  the  specimen's  lobules'

average measurement.

Comparing  the  expert  data  with  the  public  data  from the  first  image,  we can say  that

(17/119) = 14.3% of all good data had both small and large axis lengths within the expert’s

min and max measurements. Similarly, (47/119) = 39.5% of all good data had small and

large  axes  within  10  pixels  of the  expert’s  average  measurements.  There  were  many

outliers. The angle cuts alone did not remove data where people measured background

leaves or partial lobules and the background leaves and partial lobules had a noticeably

different size than the intended lobules. The outliers from the background leaves skewed

the averages;  when using  just  the angle  cuts,  the  resulting  averages differed  from the

expert by a large amount and the standard deviations in the public measurements were

large. As we wanted a way to cut outliers that did not rely on the expert data, we decided to

use IQR cuts to remove these outliers (Table 3) and we plotted the result for the individual

endpoints of the line segments that were measured by the public. When these points are

far from the lobule's edge, it indicates an inaccurate measurement. Although this technique

kept  one  set  of  measurements from  a  partially  obscured  lobule,  it  produced  a  more

accurate set of measurements which was strongly clustered on the image, as well as a

more accurate pair of averages (Fig. 4 and Fig. 5).

Validation via a second expert image measurement

In  order  to  verify  that  our  process  of  cleaning  and  cutting  the  data  leads  to

measurements which  are  close  to  expert  measurements,  we  applied  the  process  to  a

second image. This image (ID. No. 25352420) had not been used to determine the data

cleaning procedure, so it is a useful way to check that our procedure was not biased by the

image used  to  create  it. For  this image  (ID.  No.  25352420),  the  expert  predicted  the

0 1 2  

3 4 3 1

1 3
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smaller axis length to be 96.49 pixels with standard deviation of 3.99 and the larger axis to

be 193.79 pixels with a standard deviation of 2.92. When the general public measured it,

they found (after cutting for angle and outliers using IQR) the smaller axis length to be

97.34 pixels with standard deviation of 8.34 and the larger axis to be 187.83 pixels with

standard deviation of 6.17. These are statistically the same. This is evidence that removing

faulty  data  using  the  IQR bounds  leads  to  a  dataset  which  can  produce  a  good

measurement (Table 4).

Processing the IQR range for the full dataset

For  each  image,  an  image-specific  interquartile  range  (IQR)  was  found  for  both  the

major and minor axes in the remaining good data. One can determine statistical outliers

by considering only data that are within 1.5*IQR of the middle quartiles. This was used to

remove data  that  were  outliers  for  one or  both  axes.  For  the  two sample  images,  we

computed these manually in Excel. In order to extend this to all of the different images,

these calculations were done both in Python and using Excel pivot tables. By comparing

the  two  programming  solutions  with  the  manual  ones,  we  were  able  to  verify their

correctness. Note that, unlike an angle cut, this type of cut depends on all of the data that

have  been collected  for  an  image.  As  a  result,  there  may  be  variations  in  whether  a

particular set of measurements is cut when new data are added to the analysis.

Examples of measurements on the kiosk

Fig. 6 is an example of a pair of lines that do not intersect, known as invalid data. The

image is an example of a data entry that would not meet our qualifications for good data or

IQR range data. However, this is the kind of data that will be under the category of all data

because all data accept any data entry regardless of quality.

Fig. 7 passes the qualifications for potentially valid data, a pair of intersecting lines. This is

an example of a pair of lines that intersect with an angle of 33 degrees. Note that the

smaller  angle  is  recorded  rather  than  the  larger  147  degree  angle. This  image  is  an

example of a data entry that would not meet our qualifications for good data or IQR range

data. However, this is the kind of data that will be under the category of all data and valid

data.

Fig. 8 passes the qualifications for good data, a pair of lines that intersect and form an

angle of at least 80 degrees. This is an example of a pair of lines that intersect with an

angle of 88.6 degrees. This is an example of a data entry that has the potential to pass the

qualifications of the IQR range data. This is also the kind of data that will be under the

category of all data, good data and potentially IQR range data.

Results

Overall, measurements were of high quality. Significantly, all age groups, including children

(10 and under), teens and adults, produced data that could be used by researchers. The
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clustering of measurements obtained by these groups with the expert measurements can

be visualised in Fig. 5. Regarding measurement retention, our initial predictions were that

around 50% of measurements would make it through the IQR cut process and that the

older  the  age  group,  the  more  measurements  would  be  retained.  It  was  thought  that

children 10 and under would have more inconsistent measurements than the other age

groups simply due to their young age. After our statistical data cleaning, 60% of the initial

measurements were retained, higher than originally anticipated (Fig. 9, Fig. 10 and Table 5

). We felt that the most notable of these was that, in the Science Hub, the youngest age

group of kids under 10 had just over 50% measurement retention and in the Specimens

exhibit,  children (who were not  being helped by older  friends or  relatives)  had a 41%

measurement retention, which was contrary to our initial thoughts. This means that children

did  a  remarkable  job  following  instructions  and  taking  the  MicroPlant  measurements

seriously.  Unsurprisingly,  the lowest  retention within a self-identified age group at  43%

were those that  skipped giving their  age; this  was the case for  627 measurements.  A

general  assumption is that this group took the kiosk experience less seriously or were

pressed to engage in other museum activities.

Comparing the Science Hub data with the Specimens exhibit data

While the initial data analysis was performed on a 2018 dataset collected from the Science

Hub, a secondary analysis was done on a dataset collected in the Specimens exhibit. This

exhibit was focused on the large collection of scientific specimens at the museum and so

the kiosk was only a small part of the larger exhibit. This differed from the Science Hub,

which is a dedicated space where visitors can interact with scientists, as well as specimens

from the Museum's collection. The fact that there was a smaller timeframe where interns

collected demographic data from the Specimens exhibit (24 versus 48 days), meant that

the amount of  data collected from the Specimens exhibit  was smaller.  As some of the

images had a very small  amount  of  data associated with them, we combined the two

datasets to perform the IQR cuts. Note that because the IQR cuts depend on the specific

dataset used, the results may change when additional data are added in. This happened

here; the IQR cut for the 2018 data alone had 3,125 pass the cuts. When we added in the

2017 data, there were 3,126 data out of the 2018 set within the IQR ranges. This suggests

that combining the two is robust. When these combined cuts were used to examine the

2017 exhibits data,  we found that,  although there was a smaller  amount of  2017 data

collected, the quality was similar and the majority of data collected was usable, based on

completeness, angle and IQR cuts. As the quality of data was good, the majority of images

in the 2017 dataset had sufficient data to determine the lobule lengths and widths (Table 6

).

Image clarity for observers

To gain more insight into the image measurement data, an analysis was conducted on the

images themselves. The classification of the MicroPlant images was based on the number

of lobules present, complexity and clarity of the image. Standard deviations of the axis

length measurements were used to determine the clustering of the axis measurements.
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The lower the standard deviation, the closer together the measurements are clustered. The

image  classifications  were  then  compared  to  the  standard  deviations  of  the  axis

measurements,  post  IQR  cut  for  each  image.  There  were  no  notable  trends  present

between the complexity of the images and the standard deviations of the measurements. 

We then looked at  images with large standard deviations,  meaning the measurements

were not  very  clustered together.  Out  of  the 78 distinct  subjects,  we found only  three

images with very large standard deviations, one of them from the 2017 dataset. This was

only 4% of the total images displayed on the kiosk. One similarity between these three

different images is the number of observations counted, with each having between 6-14

observations total.  This can be one possible explanation about  the low quality  of  data

collected since such data were very limited. For the image with only six measurements,

there may have been confusion determining the difference between the lobules edge and

the leaf behind the lobule. The shading of the pictures can leave room for confusion as

well; and it might become unclear what is considered part of the lobule and what is not.

Comparison of participant and expert measurements

With the goal of comparing the accuracy between participant measurements and expert

scientist measurements, students conducted the same statistical test used in von Konrat et

al. (2018) on the IQR cut data for image ID. No. 8735435. This was the third distinct image

which had expert measurements associated with it. The statistical test used was a t-test

which  measures  the  difference  between  two  datasets  and  determines  if  they  are

significantly different. After performing the angle and IQR cuts, 45% of the original 855

participant measurements remained.  After  calculating the t-values for  the minimum and

maximum axis data with a confidence interval of 95%, we were able to conclude that the

participant  measurements  after  IQR  cuts  were  not  significantly  different  from  expert

measurements.

Community engagement with kiosk

Though  literally  hundreds  of  citizen  or  community  science  platforms  exist,  to  our

knowledge, this was one of the first to be featured in a live interactive museum exhibit.

Commonly, people-powered research projects engage participants online via platfoms like

Zooniverse (Zooniverse 2022) or via targeting specific interests of their users- iNaturalist (

California Academy of Sciences and National Geographic Society 2022) or WeDigBio (

WeDigBio 2022). We wanted to know what impact placing an exploratory and unguided

community science platform within a museum setting would have.  What percentage of

people who pass through the exhibit would stop to engage with the kiosk platform (Table 7

)? Rough calculations, based both on our observations, ticketing information and dataset

timestamps tell us that about 14-20% of individuals who passed through the Specimens

exhibit  interacted  with  the  kiosk  in  some  manner.  We  were  able  to  tabulate  kiosk

interactions by occasionally placing interns who observed and recorded from a distance

who was interacting with the exhibit following standard protocols for observing people in
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exhibitions. These observers noted approximate age and perceived gender of participants,

as well engagement levels.

The  Science  Hub  is  designed  for  hands-on  interactions  and  discussion  with

scientists. During the time that the kiosk was present in the Science Hub, 23,549 people

visited the Science Hub, with 1,014 interactions with the kiosk. Based on this, we estimate

that between 4.3% and 12% of the visitors to the Science Hub interacted with the kiosk; if

the  group  sizes  were  similar  to  those  directly  observed  in  the  Specimens Exhibit,

approximately 8% of the Science Hub patrons interacted with the kiosk. As the kiosk was a

stand-alone exhibit in the Science Hub, it is likely that museum patrons were more inclined

to interact with the scientists present rather than a stand-alone computer exhibit.

Data resources

GitHub houses all of our data and scripts (Labontu 2022). Scripts were used to take raw

data (Raw 2018 Data , 2017 data with intern observations) and parse it into the "All Data"

and "Good Data" formats.

Initial IQR cuts and comparisons to expert data were done by hand. Systematic IQR cuts

were performed in Excel Pivot Tables for IQR. Results from IQR cuts in Python are in    Pro

cessed 2017 and 2018 data, which includes totals of the 2017 and 2018 data broken down

by demographics, average lengths and standard deviation for each image after IQR cuts

and  also  the  All  Data  sets  for  both  2017  and  2018.  For  the  third  image  with  expert

measurements, t-test results were performed in Excel.

Discussion

All age groups, including children (10 and under), teens and adults, produced valid, high

quality data that could be used by researchers. Significantly, the paper outlines the

implementation of experiential learning through an undergraduate mathematics course that

focuses on projects with actual data to gain a deep, practical knowledge of the subject,

including  observations,  the  collection  of  data,  analysis  and  problem  solving. We  are

promoting  an  intergenerational  model  including  children,  high  school  students,

undergraduate  students,  early  career  scientists  and  senior  scientists,  combining

experiential  learning,  people-powered  research  and  data  derived  from  natural  history

collections.

Data precision

From  this  study,  the  public  is  capable  of  producing  a  usable  set  of

measurements. However, there are two limitations to the precision of these measurements.

One is the touchscreen technology. As the smallest unit was a pixel, the difference of just a

couple of pixels in the measurement corresponded to a 1% difference in length. This level

of  precision could not  be improved upon with the technology used. The second is the
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variation  in  public  measurements.  Scientists  who  want  to  distinguish  between  species

whose size differences are large (such as 10% difference) would be able to use work from

the public; however, if the difference is very subtle (such as a 1% difference in length), it

would not be possible. 

For cases where multiple types of species may exist in an individual image, there could be

multiple sizes of measurements in an individual image. This would make the IQR analysis

ineffective  at  finding  outliers  and  so  more  subtle  methods  would  need  to  be

employed. However, if one found clusters of different sizes, it may be possible to create a

machine-learning algorithm to use for the data processing portion.

Experiential learning and interdisciplinary science

Interdisciplinary science entails the collaboration of scientists with largely non-overlapping

training and core expertise to solve a problem that lies outside the grasp of the individual

scientists  (Cech  and  Rubin  2004).  Yet  interdisciplinary  research  (IDR)  is  more  than

collaboration: it is also applying concepts or methods from other fields or writing to make

your research accessible to other types of scientists (Brigandt 2013). IDR is better suited

for  addressing  critical  “big  picture  problems”  such  as  sustainability  and  conservation  (

Palmer 2001,  Carayol  2005,  Campbell  2005).  Early  IDR exposure aids cross-discipline

communication  (Bridle  et  al.  2013)  and  makes  students  more  likely  to  pursue  STEM

careers (Daugherty and Carter 2017).

This was an authentic interdisciplinary experience in experiential learning. Students from

various backgrounds, specialities and ages were involved in all aspects of this project from

inception to completion. While this report focuses on the data analysis, prior collaborations

with both college and high school students led to the development of the project. Thus, all

involved students participated in a rich, real world learning experience to generate and

later  analyse  a  real  and meaningful  dataset  answering  questions  that  were  previously

unanswered. Students involved in the data analysis found the skills  that  they acquired

through the project to be highly applicable to their post-graduation jobs, with comments

such as: "I’ve used a lot of the VBA (Visual Basic for Applications) skills from your classes

with the Field Museum".  This indicates that  this project  was good preparation for  both

research work and industry jobs. As this course was originally developed as part of the

PICMath programme, it is a way to both fulfil the goals of the programme and to increase

scientific  knowledge.  Future  endeavours  could  implement  student  evaluation  prior  to,

during  and  post  course,  as student  feedback  on  their  learning  journey  is  effective  in

improving both student satisfaction and learning (Mandal 2018).

Despite  the  critical  role  of  experiential  learning  in  building  student  research  skills  and

capacity,  few  have  explored  social  interaction  mechanisms  used  to  facilitate  student

experiential  learning in an interdisciplinary research team (Ryser et  al.  2008). This has

great potential in future reiterations that could be investigated. 
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Exploring motivation and testing between audiences

There remain many interesting education and learning questions that could be investigated

using  the  current  dataset,  as  well  as  future  studies  embarking  on  similar  large  scale

projects. For example: How many measures must be taken by each kind of user group?

Are there significant differences in measurement facility amongst children, adolescents and

adults? Are there significant differences between a facilitated audience and a purely online

audience? Limited work has investigated the arc of engagement from secondary to post-

secondary education and into adulthood. Examining a cross-sectional population set will

allow us to study reasons and motivations of learner engagement moving from a formal to

an informal setting. The potential also exists to use this project to explore how authentic

research experiences can both develop student interest  in STEM and STEM careers (

Boyer 2017), as well as promote learning of biodiversity concepts (Gunckel et al. 2012).

Although it is possible to use this dataset to compare kiosk locations, in the future, having a

consistent  set  of  self-described  demographic  categories  would  allow  for  a  consistent

comparison of  how different  demographics  interact  in  the  the  different  kiosk  locations.

However, given that the desire to collect demographic information was realised after some

data were collected, the addition of a brief demographic survey to the kiosk was a natural

course correction.  In addition,  collection of  demographic information before starting the

activity  interrupts  the  activity  and  presents  other  challenges  when  switching  between

participants. 

Our experience with this project yielded insight into how to plan for future projects. For

other taxonomic projects, the most robust measurements will  involve images where the

public  can easily  identify  the object  to  be measured.  As noted in  the conclusions,  the

distinction between smaller lobules and the larger underlying leaves led to a number of

inaccurate measurements. As this is a large, multi-year project, students who are involved

in  it  will  graduate  before  it  is  completed.  Faculty  and  museum leaders  are  the  ones

maintaining continuity of the project; they need to make sure that the student data work is

documented and stored in a way that is both carefully labelled and accessible. This allows

multiple  years  of  students  to  collaborate  and  make significant  continual  progress  in  a

robust  manner.  In  terms  of  project  management,  the  most  challenging  aspect  was

maintaining contact and retaining connections between student cohorts. It is critical to plan

for this from the very start of development when pursuing such projects.

Community Science in a museum setting

Though we are able to tabulate a certain interaction level by patrons with the kiosk (Table 7

), it is worth noting that we also have sets of observational notes about how individuals and

groups interacted with the kiosk display. As we did not have questionnaires and surveys

always linked to the activity, engagement levels and observations were noted by onlookers

for a portion of the time that the kiosk was in the Specimens exhibit. From observer notes,

we were able to compile a word map demonstrating the true inclusive nature of the activity
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and summarise interactions with  the kiosk (Fig.  11).  As museums are often visited by

families and groups, the kiosk was a place where people gathered to interact and engage

not only in science, but with each other. We were able to note many examples of parents,

children and peers working together in a truly collaborative manner as is core to community

science. Our  anecdotal  observations  of  patrons  interacting with  the  kiosk  support  the

supposition  that  there  is  a  growing body  of  evidence  suggesting that  such  digital

technology can create engaging learning opportunities in museums (Roberts et al. 2018).

There is great potential in implementing community science activities in a natural history

museum environment using digital technology to help foster curiosity and engagement with

scientific collections. Unobtrusive video recording and patron surveys would be invaluable

in providing deeper insight.

Conclusions

A project which involves the public, high school interns and university students, can allow

for the entire community to create scientific discoveries. It allows for scientists to analyse

large collections of specimens and it helps to give students an in-depth experience of what

it is like to be a professional scientist or data analyst. This occurred at all levels. Given a

sufficient number of community members measuring leaves, we were able to obtain high

quality measurements, which were comparable to expert measurements, using methods

that can be automated. This bodes well for crowd-sourcing taxonomic data collection from

images. Mathematics alumni reported that the process of developing and creating these

automated data processors was educationally  beneficial  for  them as they were able to

apply their skill-set to internships and post-graduation jobs working with data. Students of

some  cohorts  of  both  the  Industrial  Applications  of  Mathematics  course  and  museum

interns have continued to pursue graduate degrees.

Next Phase: Unfolding of MicroPlant Mysteries

In  today’s society,  K-12 students'  technological  interests with platforms,  such as digital

making (Lewin and Charania 2018), can enhance students' informal learning experiences (

Lai et al. 2013). The MicroPlant kiosk created an informal experience where participants of

all  ages  leveraged  their  digital  curiosity  to  learn  more  about  biodiversity  in  under-

represented plants. The MicroPlant project's success in the in-person, online and kiosk

formats  generated an avenue for  this  theme to  be explored on a greater  scope.  That

project  focused  on  participants'  ability  to  produce  high  quality  data,  based  on

measurements  of  a  specific  morphological  character  set.  The  Unfolding  of  MicroPlant

Mysteries project (Zooniverse 2021a), initiated and designed by two high school interns,

focused on participants’ capacity to classify and identify morphological features, such as

branching patterns and sexual phenotypes (Fig. 12). Data from the project would then be

analysed by undergraduates and Masters' students. This expands data generation beyond

measurements;  this will  greatly  aid  in  accelerating  biodiversity  discovery  and

documentation of these organisms. To date, this project has met with enormous success

logging over 60,000 classifications from over 800 users with early results showing over a
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70% accuracy  rate  for  the  reproductive  structure  task  (Gillis  et  al.  2022).  Supervised

learning algorithms have the potential to use multiple crowdsourced inputs to generate a

response whose reliability is similar to an expert’s (Li et al. 2015). Here, we performed a

preliminary and exploratory data analysis  using sequential  neural  networks. Clusters of

boxes that users drew around reproductive structures were used along with expert boxes

as training  data  for  a  neural  network;  this  neural  network  was  then  validated  using  a

second set  of  user  drawn clusters  and expert  data,  resulting in over  90% accuracy in

classification for the reproductive structure task. The class was also able to make several

recommendations to improve the project, such as the addition of a no-branching option,

changes to the tutorial and data management suggestions. This content is also currently

being mapped on to  Next  Generation Science Standards (NGSS) (NGSS Lead States

2013) and is being used to explore the utility of  a new Zooniverse classroom  (https://

classroom.zooniverse.org/). The research team is also exploring the potential application of

machine  learning  as  recent  studies  have show  that  combining  human  and  machine

classifications can efficiently produce results superior to those of either one alone(Trouille

et al. 2019). With the aim of making science accessible to a large and diverse demographic

of learners, we hope to continue to emphasise the important connections and potential

collaborations  between  universities,  museums,  students,  researchers,  and  the  general

public.
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Figure 1.  

An example of  the liverwort  genus Frullania a)  Growing on bark;  b)  Ventral  view of  stem

indicating modified leaves or lobules (L) that participants are asked to measure.
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Figure 2.  

The online platform, based on Zooniverse, developed into touchscreen technology as part of

an interactive kiosk in a high-profile exhibit at Field Museum: a) Instructions were mounted as

well  as available using the touchscreen; b) Students from Roosevelt  University testing the

platform;  c)  Depicting  details  of  the  interactive,  including  the  workspace  for  measuring,

instructions on what a pair of perpendicular lines looks like, map indicating the geographic

locality and number of measurements.
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Figure 3.  

Data generation and processing. Blue round-edged rectangles indicate data from the public.

Green  round-edged  rectangles  indicate  data  processed  by  hand  by  students.  Yellow

rectangles indicate automated data processing. Red rectangles indicate data which have been

filtered out. 
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Figure 4.  

Full data (without any cuts) for image (ID. No. 8735482). Despite the high contrast between

the lobule and background, there are measurements which are far from the actual lobule.
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Figure 5.  

IQR cuts for image (ID. No. 8735482). The data remaining are on the correct lobule, with the

exception of one set on the portion of the lobule on the top left.
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Figure 6.  

A lobule with a pair of non-intersecting measurements.
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Figure 7.  

A lobule with a pair of line segments which intersect, but which do so at a small angle.

 

31

https://arpha.pensoft.net/zoomed_fig/7634139
https://arpha.pensoft.net/zoomed_fig/7634139
https://arpha.pensoft.net/zoomed_fig/7634139
https://doi.org/10.3897/rio.8.e83853.figure7
https://doi.org/10.3897/rio.8.e83853.figure7
https://doi.org/10.3897/rio.8.e83853.figure7


Figure 8.  

A lobule with a pair of nearly perpendicular intersecting line segments whose smaller angle is

above 80 degrees.
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Figure 9.  

The majority (60%) of the over 6,000 lobule measurements were of generally high quality, with

only a small number of non-intersecting or missing measurements. The majority passed IQR

cuts; the most common reason to filter out data was when the angle was under 80 degrees.
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Figure 10.  

The total  number of  lobule measurements and total  number that  passed IQR cuts broken

down by demographic grouping.
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Figure 11.  

Word cloud of observer notes of kiosk participants who were recorded from an unobtrusive

distance.
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Figure 12.  

A plant stem of the liverwort genus, Frullania. Participants identified and outlined male parts in

blue and female parts, in red and green. The dots in the centre represent the centroids of the

boxes; these were used for data clustering purposes.
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2017 Specimens exhibit

demographics 

No. of

participants

2018 Science Hub

demographics 

No. of

participants

Child 230 10 and under 319

Teen 107 11 to 17 220

Adult 243 18+ 324

Family (group with multiple age groups) 6 Skip (unanswered question) 151

Table 1. 

Demographics and the number of participants using the kiosk in each category in the dataset used

in this analysis. This does not include all of the people who interacted with the exhibit; rather, it

includes only those individuals for whom we have demographic data.
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All data Data collected any time a person pushed the submit button on the kiosk, regardless of quality or even

existence of measurements.

Good

data

A set of pairs of line segments that intersected for an image and whose smaller angles of

intersection are at least 80 degrees.

IQR cut

data

A subset of good data for a particular image where the IQR (interquartile ranges) for both the length and

the width are calculated and an image-dependent cut is made, based on both of these.

Table 2. 

Categories of data used in analysis.
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  Major axis length (pixels) Stdev Minor axis length (pixels) Stdev

Expert 142.65 3.26 93.68 3.00

Public with angle cuts 159.23 84.44 117.22 69.04

Public with IQR cuts 135.89 15.13 96.20 8.56

Table 3. 

Comparison of measurements done by an expert with those done by the public after cutting based

on angles (above 80 degrees) and by IQR. Comparison of public and expert measurements for

image ID. No. 8735482.
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  Major axis length (pixels) Stdev Minor axis length (pixels) Stdev

Expert 193.79 2.92 96.49 3.99

Public with IQR cuts 187.83 6.17 97.34 8.34

Table 4. 

A comparison of expert measurements and public measurements after and IQR cut for a second

MicroPlant  image.  Second  comparison  between  public  and  expert  measurements  for  image

25352420.
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Demographic Data collected Number passing IQR Percent passing IQR

Child (in 2017) 503 207 41%

Teen (in 2017) 414 197 48%

Adult (in 2017) 448 356 79%

Family (in 2017) 215 131 61%

Total 2017 (Specimens) 1,580 891 56% 

10 and under (in 2018) 1,562 775 50%

11-17 (in 2018) 1,224 782 64%

18+ (in 2018) 1,690 1,298 77%

Skip (in 2018) 627 270 43%

Total 2018 (Science Hub) 5,103 3,125 61% 

Overall Total 6,683 4,017 60% 

Table 5. 

Demographic breakdown of totals and IQR pass work in 2017 and 2018. In this,  each number

represents the total number of lobules measured, rather than the number of individuals doing the

measuring or the number of images used. A kiosk session where no valid measurements were

submitted is counted as 1 in the data collected category.
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  Data

collected

Data which passed

combined IQR cuts
Percent which passed

combined IQR cuts

2017 Specimens exhibit

data
1,580 891 56%

2018 Science Hub data 5,103 3,126 61%

Combined data 6,683 4,017 60%

Table 6. 

Overall  data  passing IQR  cuts.  In  this,  each  number  represents  the  total  number  of  lobules

measured, rather than the number of individuals doing the measuring or the number of images

used. A kiosk session where no valid measurements were submitted is counted as 1 in the data

collected category.
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Total interactive hours observed 44.5

Approximate number of people engaged with exhibit during observation hours 580

Amount of hours people spent engaged with exhibit 12

Approximate percentage of exhibit patrons who interacted with the Specimen exhibit kiosk 14-20%

Table 7. 

Visitors to kiosk exhibit in Field Museum's Specimens exhibit, summer 2017 (June-August).
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