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Abstract

In this paper, we consider the problem of how to quantitatively characterise the degree to

which a study object exhibits a generalised response. By generalised response, we mean

a multivariate response where numerous individual properties change in concerted fashion

due to some internal integration. In latent variable structural equation modelling (LVSEM),

we would typically approach this situation using a latent variable to represent a general

property of interest (e.g. performance) and multiple observed indicator variables that reflect

the specific  features associated with that  general  property.  While ecologists have used

LVSEM in a number of cases, there is substantial potential for its wider application. One

obstacle is that LV models can be complex and easily over-specified, degrading their value

as  a  means  of  generalisation.  It  can  also  be  challenging  to  diagnose  causes  of

misspecification and understand which model modifications are sensible. In this paper, we

present a protocol, consisting of a series of questions, designed to guide the researchers

through the evaluation process. These questions address: (1) theoretical development, (2)

data requirements, (3) whether responses to perturbation are general, (4) unique reactions

by individual measures and (5) how far generality can be extended. For this illustration, we

reference  a  recent  study  considering  the  potential  consequences  of  maintaining

biodiversity as part of agricultural management on the overall quality of grapes used for

wine-making.  We extend our  presentation to  include the complexities  that  occur  when

there are multiple species with unique reactions.
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Introduction

The quest for generalisation in the ecological sciences is a fundamental challenge. One

way that  a general  reaction by a system or  organism can be detected is  if  there is  a

multivariate response where numerous individual properties change in concerted fashion.

While such concerted reactions are often described using standard multivariate statistical

analyses,  causal  investigations  of  the  nature  of  integrated  multivariate  responses  fall

primarily into the purview of latent variable structural equation modelling (LVSEM, Joreskog

1970, Bollen 1989). LVSEM represents a foundational method in quantitative training in the

fields of psychology and sociology, while other fields, including ecology, have historically

focused on observed variable models (e.g. OVSEM, aka path analysis). While there has

been an increased use of LVs in ecological models in the past 20 years (e.g. Arhonditsis et

al. 2006, Shipley et al. 2006, Cubaynes et al. 2012, Liu et al. 2016, Souchay et al. 2018),

only a few descriptions of the methods have emerged (Pugesek et al. 2003, Grace 2006, 

Shipley  2016).  More  importantly,  the  depth  of  coverage  of  the  subject  in  ecological

treatments  is  much  less  than  in  social  science  treatments,  leaving  untapped  the  full

potential  for  LVSEM to advance ecological  understanding.  In  this  paper,  we present  a

protocol designed to guide ecological researchers through the evaluation of hypotheses

about generalised responses using LVSEM.

Fig.  1 provides  a  high-level  perspective  of  the  problem  of  interest  in  this  paper.  The

particular form of representation here is referred to as a Structural Equation Meta-Model

(SEMM),  which  represents  the  conceptual  entities  of  interest  in  the  study  and  the

hypothesised causal connections amongst them (Grace et al. 2010). SEMMs are meant to

solve a ubiquitous problem in statistical modelling, which is that our theories exist at a

general level, while our fully-specified statistical models are highly specific. SEMMs are

meant  to  facilitate  an  explicit  linkage  between our  theoretical  ideas  and  our  specific

findings. Typically, this step in the science process is implicit and, thus, the question of how

our results generalise goes undescribed (and presumably only lightly considered).

The hypothesis represented in Fig. 1 is very general. It simply posits that the response of a

system  to  perturbation  can  be  understood  through  an  evaluation  of  the  mediating

mechanisms. In this paper, a primary emphasis is on the nature of the response. We are

especially interested in the degree to which the subjects of study exhibit a tightly integrated

suite  of  changes.  Several  theoretical  possibilities  exist.  In  highly  integrated responses,

multivariate reactions will manifest strong and consistent correlations amongst measured

indicator variables. At the other extreme, non-integrated responses will manifest reactions,

such that  each measured property  acts independently  from the others.  Between those

extremes are cases where there are mixtures of general and individual responses. All of

these details are of interest if we are to develop an understanding of the study system and

if we wish to properly represent hypotheses that can explain the observed data. That said,

a substantial degree of intercorrelation amongst measured indicator variables is required if

general  responses  are  expected  to  conform  to  the  requirements  for  latent  variables.
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LVSEM allows us to empirically test hypotheses about the latent responses so as to arrive

at a model with both theoretical and empirical support.

Fig. 2 illustrates the LVSEM approach to representing a general multivariate response. 

Conceptually,  Fig.  2 describes the case where there is  some underlying cause for  the

various specific, yet correlated, responses. It is characteristic that the underlying cause is

not directly observed. Instead, we learn about the latent properties of the underlying cause

through the patterns of correlations amongst specific manifestations. Statistically, Fig. 2

 represents a very particular hypothesis. For those not accustomed to causal modelling, an

important shift in thinking is required to differentiate one’s logic from that associated with

descriptive  statistical  models.  For  example,  we  might  employ  principal

components analysis  to  estimate  a  set  of  parameters  consistent  with  Fig.  2.  Such

parameters would be purely descriptive, a summary of the data and fail to correspond to

any particular causal explanation. In LVSEM, the model evaluated is treated as a causal

hypothesis, which, in this case, is that the intercorrelations amongst indicator variables can

be adequately explained by a single common causal process. All other sources of variation

for the indicators are assumed to be independent. There are many ways in which data may

fail  to confirm this hypothesis,  leading us to construct  alternative causal  hypotheses in

order to explain what is going on.

Numerous  complexities  can  be  encountered  when  analysing  models  containing  latent

variables with multiple indicators. It is probably safe to say that the available literature may

be inadequate for  the beginning user  of  SEM to navigate the various diagnostics  and

decisions required for such models. Our primary objective in this paper is to provide a

series of  questions that  can guide the investigator  through the process.  Our  advice is

targeted for the general objective outlined in Fig. 1 and may have to be supplemented for

models with more complex purposes.

The Basic Analytic Machinery for LVSEM

There exist  many technical  descriptions of  the analytical  machinery used to implement

LVSEM. Here, we provide a non-technical summary and refer the reader to Bollen 1989 for

a detailed treatment. A concise presentation of the equations and notation corresponding to

our presentation can be found in Suppl. material 1.

Fig. 3 provides a more complete representation of the kind of model we seek to evaluate in

this paper. Here, we see that, in addition to a latent variable for the general response and

its  four  indicator  variables,  our  hypothesis  includes  latent  variables  for  a  specific

perturbation and a hypothesised mediator variable that explains the effect of perturbation

on the general response. The model also proposes that the Perturbation can affect the

General Response independently from the Mediator and the Mediator can affect particular

responses (e.g. response4) to some degree differently from the other responses.

The classical approach to implementing SEM involves the analysis of covariances. For

this,  the  rows  of  raw  data  are  converted  into  a  variance-covariance  square  matrix.
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Hypothesised models represent a set of expectations about the patterns of covariances

that should be found in data. Typically, covariance modelling estimates the parameters of

the  causal  diagram  via  maximum  likelihood  while  respecting  the  assumed  causal

relationships specified in the causal graph. Covariance SEM also produces a statistic that

summarises the differences between the observed covariances and those predicted while

agreeing with the model  structure and tests the null  hypothesis that  the observed and

predicted covariances are equal, except for random sampling variation. Failure to reject

this null hypothesis is evidence that the assumed causal structure is correct.

For LVSEM, model structure is described using equations representing the relationships

between  latent  variables  and  their  indicators  and  equations  describing  relationships

amongst  latent  variables  (Suppl.  material  1).  For  the  model  in  Fig.  3,  software  would

implement the variables Specific  Perturbation and Specific  Mediator as latent  variables

with  single  indicators  in  order  to  be  consistent  in  the  use  of  separate  matrices  for

relationships  amongst  latent  variables  and  relationships  between  latent  and  observed

variables (Suppl. material 1, Table S1.1). Variables are described as exogenous if  they

serve only as predictors of other variables (no arrows pointing to them) and endogenous if

predicted by other variables (possess incoming arrows). In Fig. 3, Perturbation is the only

exogenous  variable,  all  others  are  endogenous.  The  Greek  symbols  used  to  denote

various parameters correspond to the matrices used to implement the models. The lambda

matrix contains the model-implied weights between latent variables and their indicators, the

beta matrix contains the effects of endogenous variables on other endogenous variables

and  the  gamma  matrix  contains  the  effects  of  exogenous  variables  on  endogenous

variables. Two additional matrices are the psi matrix, which contains the latent error terms

(zeta 1 and 2), as well as their intercorrelations, if such are specified and the theta-epsilon

matrix, which includes the errors for indicators (epsilon 1-4) and their intercorrelations, if

any. The practical value of these matrices is that they permit a great flexibility in model

specification,  allowing  for  error  correlations,  reciprocal  effects  and  a  great  many

customised specifications.

An  Ecological  Example:  The  Responses  of  Grape  Nutritive

Qualities to Intensity of Agricultural Management

Steiner  et  al.  2021 conducted  a  study  of  Swiss  vineyards  managed  under  different

intensities  of  weed  management,  which  resulted  in  different  levels  of  non-crop  plant

biodiversity. Grape qualities of known importance to wine-making (nitrogen, sugars, tartric

acid  and malic  acid)  were measured and served as indicators  of  the general  property

"Grape Qualities". Features of the spontaneous vegetation that were measured included

total cover, total species richness and abundance of nitrogen fixing plants. The empirical

measurements  corresponding with  the concepts  of  theoretical  interest  are  summarised

in Table 1.

The overall study objectives are summarised in Fig. 4. Here, it can be seen that the overall

problem  was  to  determine  whether  management  intensity  has  an  influence  on  grape
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qualities and whether such an effect can be explained by hypothesised mediators. One

question of interest in this study was whether the measured properties of grapes show an

integrated pattern of response. This question was evaluated first before examining effects

of  management  intensity,  spontaneous non-crop vegetation and soil  nitrogen on grape

qualities.

Illustration of a Protocol for Evaluating Hypotheses about General

Responses

Question  #1:  What  are  the  Anticipated  Characteristics  of  the  Theoretical

Construct(s) of Interest? 

We learn about latent variables indirectly. More specifically, we learn about them through

theorising and empirical  investigations,  rather than direct  measurement.  It  is  important,

therefore, that we consider the theoretical meaning of constructs carefully and explicitly.

Most  ecologists  are  accustomed  to  using  descriptive  procedures,  such  as  principal

components analysis (PCA), when faced with a set of related measurements. PCA seeks

to  reduce  a  set  of  variables  to  some  smaller  number  of  composite  variables  (aka

components) that contain most of the information in the set. PCA is purely a data-reduction

method  and  there  is  no  basis  for  drawing  causal  interpretations  of  the  resulting

components (McCune et al. 2002, Chapter 30).

With LVSEM, we might pose a hypothesis, such as the one shown in Fig. 5A for the grape

study.  Here,  we  are  hypothesising  that  the  chemical  composition  of  grapes  is  tightly

regulated within plants and, thus, there should be strong integration and tight correlations

(positive or negative) amongst indicator variables. However, the simple structure shown in

Fig. 5A is not necessarily the only model to initially consider. For example, we might wish to

also consider  a  model  like the one in  Fig.  5B,  which anticipates that  certain  chemical

properties will  be inherently more tightly constrained. In that case, we might expect an

additional  effect,  which can be represented by including an error correlation. The error

correlation is actually an implied latent variable. We might want to represent this effect

using a double-headed arrow rather than by including an explicit latent variable for several

reasons.  First,  it  allows us  to  retain  focus  on  our  primary  hypothesis.  Second,  it  only

involves a single parameter, thereby saving model degrees of freedom and maintaining

statistical power.

In thinking about our theoretical constructs, of fundamental importance is whether we think

the concept is unidimensional (behaves like it is one thing) or multidimensional (behaves

like a collection of different things). Taken literally (which software estimation will do), the

hypothesis being evaluated in Fig. 5A is that there is a single common cause influencing all

the response indicators. The effects (lambdas) do not have to be equal, but their relative

strengths have to be consistent if we are to believe they are correlated due to a single

common  cause.  All  other  causes  contributing  variations  to  response  indicators  are

independent (the epsilons).  If  we think there are latent factors causing some response
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indicators to be more strongly correlated than could be explained by the single cause of

theoretical interest, we might expect the need to include correlations amongst errors.

There are many other possibilities that might be supported by theory. The most common

alternative is that a theoretical “construct” or concept may be a collection of independent or

semi-independent  causes.  The  details  that  accompany  this  situation  are  beyond  our

purpose in this paper and the reader is referred to Grace et al. (2010) for a discussion of

this larger topic.

Question #2: Are there Appropriate Measured Variables that can Serve as Indicators

of the General Theoretical Constructs? 

When interested in a general property of a study system, it is recommended that one gives

careful consideration to the previous question about expected attributes when designing

the sampling scheme. This is one of those interesting differences between science practice

in the social sciences versus the ecological sciences. In the social sciences, particularly

when studies involve human behaviour, the default assumption is that the latent properties

are of primary interest. Studies may involve human attitudes and motivations, which are

assumed from the outset to be “deeply latent” and only discernible indirectly. This has led

to the development of a process for careful consideration of the development of proper

measures  for  the  constructs  of  interest.  For  example,  the  American  Association  of

Psychology  Dictionary  (VandenBos  2007)  provides  the  following  description  for  scale

development:

“The process of creating a new instrument [a set of specific measurements] for measuring

an  unobserved  or  latent  construct,  such  as  depression,  sociability,  or  fourth-grade

mathematics ability. The process includes defining the construct and test specifications,

generating items and response scales, piloting the items in a large sample, conducting

analyses  to  fine-tune  the  measure,  and  then  readministering  the  refined  measure  to

develop norms (if applicable) and to assess aspects of reliability and validity.”

Our  purpose  here  is  to  raise  awareness  of  the  fact  that  there  has  been  substantial

development of methodologies in other scientific disciplines that could be of interest to

natural scientists, but that has been systematically ignored to the detriment of our scientific

studies. It is beyond the scope of the present paper to consider this body of knowledge in

detail, though the expected requirements for a set of indicators to represent a theoretical

construct will be illustrated via our presentation. For a more general introduction to scale

development, one can refer to DeVellis (2016).

When one wishes to develop a latent variable SE model, it is possible to proceed by having

one  or  more  indicator  measurements.  Having  only  a  single  measure  provides  limited

opportunities.  The  most  commonly  adopted  approach  is  to  simply  assume  that  the

measured  variable  is  a  perfect  representation  of  the  latent  property.  The  main

accomplishment achieved in such a model is to make a conceptual distinction between the

concept  of  interest  and the observed measure.  When we have some estimate for  the

reliability (repeatability) of a measurement process, we can insert that information into our
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model and remove bias due to measurement error. Once we have two or more indicators, it

is possible to confirm or not the presence of a latent cause. This is the example situation

we address in the current paper.

Indicator validity refers to the requirement that measured variables are interpretable as

measures of the concept of interest. This is a theoretical requirement, but one to not forget

to address in a paper. We recommend the construction of a table such as Table 1 as a

formal means of defining explicitly the basis for explaining the logic connecting indicators to

latent variables.

Question #3: What do the Patterns of Intercorrelations Amongst Indicator Variables

Suggest? 

It is one thing to conceptualise a set of observed variables as reflections of a concept of

interest, but it is another thing for the data to agree with one’s conceptualisation. A simple

first approach to this problem is to construct a correlation matrix to see if the patterns of

correlations  amongst  indicator  variables  are  roughly  consistent  with  theoretical

expectations. For this exercise, we focus on the sub-model shown in Fig. 5A rather than

the entire model for simplicity. Data for this paper were simulated from the results found by

Steiner et al. (2021), as our goal is not to revisit the analyses performed by Steiner et al.

(2021),  but  instead  to  use  that  study  as  a  tangible  example  of the  methods

demonstration in this paper.

Fig. 5A implies two main things about our expectations of the data. The first expectation is

very general; we expect the indicators to be correlated with one another. If we fail to find

significant correlations (based on standard tests and null hypothesis testing, p < 0.05, then

the indicators are not varying in concert and the data will not support the claim of a latent

cause. Beyond that primary expectation, we might expect the standardised lambdas to be

similar to each other in magnitude if they are simply controlled by a single common cause.

There are many reasons this expectation might not be met. For example, if the true model

is as shown in Fig. 5B, we would expect a somewhat different pattern of correlations. If that

model were the true model, we would expect sugars and malic acids to be more strongly

correlated  with  each  other  than  with  the  other  measures.  Going  one  step  further,  the

pattern of correlations may tell us which of several a priori theoretical alternatives are likely

to be supported.

When one starts working with LVSEM, it is found that there are many ways that data may

deviate  from showing  equal  correlation  strengths  amongst  indicators,  aside  from error

correlations, some of which are suggested in Fig. 3. In the case of the data presented in

Table 2, the correlations amongst indicators vary in strength, ranging from 0.61 to 0.27.

The first thing to note is that sugars are negatively correlated with the other properties,

suggesting  some  metabolic  trade-off.  A  second  observation  is  that  tartric and  malic

acids are only weakly correlated, which argues against the idea that acid production is a

general property.

Question #4: Do Analyses Support There Being a Generalised Response? 
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It  is  customary  in  SEM practice  to  analyse  latent  variable  models  in  two  stages,  first

evaluating  the  fit  between  latent  variables  and  indicators  (Fig.  5A)  and  then  second,

evaluating the full model (e.g. Fig. 6). Results obtained from the analysis of sub-models are

only  provisional,  but  this  provides  an  opportunity  to  isolate  certain  kinds  of

misspecifications without working through models containing multiple misspecifications. SE

models  that  include  only  latent  variables and  their  indicators  are  often  referred  to  as

confirmatory factor analysis (CFA) models. Grace (2020) describes an integrated approach

to comparing SE models that is consistent with current views from the field of statistics.

The approach described involves an assessment  of  the weight  of  evidence supporting

each model in the theoretically-defensible set of models being compared and considers the

use of p-values along with information criteria, such as Akaike Information Criteria. Some

readers may find that treatment a useful complement to the presentation in this paper.

Table 3 presents the code used to conduct a CFA examination of the model shown in Fig. 5

A. As can be seen in Table 3, lavaan allows for the use of covariance matrices as input

data, which is very helpful in methods illustrations. The CFA command “GrapeQual =~ N

+Sugars +Tart +Malic” is read as, “The latent property Grape quality is measured by four

indicators, nitrogen, sugars, tartric acid and malic acid.”

Tables of results for all  models run in the paper are provided in Suppl.  material  2. The

reader may find it useful to download that file to follow along if they wish to see more of the

raw results. References to specific tables of results (e.g. Table S2.1) are provided in the

text that follows. Suppl. material 3 contains the R script as a separate document.

Examination of results focuses initially on overall model fit (Suppl. material 2, Table S2.1).

We do not want to interpret results related to parameter estimates until we are confident

there are no major model-data discrepancies; therefore, initial focus is placed on model fit

evaluation.

Results show strong support for our initial model (Table S2.1). A test statistic (Model Chi-

square) value of 0.808 with an associated p-value of 0.668 was found. This p-value is well

above the 0.05 criterion, providing strong support  for there not being major model-data

discrepancies.  A Comparative  Fit  Index  value  of  1.000  further  indicates  a  near-perfect

explanation of the observed covariances by the model. Thus, it is extremely unlikely that

additions to our model, such as shown in Fig. 5B, would be justified. That said, we do not

use a 0.05 criterion as an absolute cutoff for adequate fit, since p-values above 0.05 can

hide important discrepancies.

Having assessed the global model fit, we turn attention to the parameter estimates (Table

S2.1).  Again,  we do  not  treat  p-values  as  absolute  cutoffs,  but  instead as  continuous

measures of evidence that a parameter or model deviates from the default expectation (

Grace 2020). For our assessment of global model fit (Table S2.1), the default expectation

is our hypothesised model (Fig. 5A). For parameter estimates (Table S2.1), however, the

default expectation is a value of zero. The p-values for parameters, which range from <

0.001 to 0.003, provide further support for the model in Fig. 5A. Note that the estimate for

N (lambda1) is fixed to a defined value of 1.0 as a lavaan default. This is done to set the
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scale  for  the  latent  variable,  which  would  otherwise  be  unidentified.  Finally,  R-square

values are provided in Table S2.1 and indicate the degree to which our hypothesised latent

cause explains the total observed variation in the indicator variables. Values returned were

0.78 for N, 0.38 for Sugars, 0.21 for Tart and 0.46 for Malic. Thus, in this case, variation in

N appears  to  be  less  influenced by  factors  outside  the  model  compared  to  the  other

indicators.

Question  #5:  Does  the  Generalised  Response  Exhibit  a  Concerted  Reaction  to

Perturbation? and 

Question #6: Are there Unique Reactions by Specific Indicators? 

The complexity of SE models and the variety of inferences we typically wish to make lead

us to move through the evaluation of our overall hypothesis in stages. It is important to

keep in mind that conclusions one might draw, based on the analysis of sub-models, may

need to be reconsidered once the full  model is examined. Having examined the latent

response sub-model, we now move to a pair of competing models shown in Fig. 6. Here,

we use single measures for management intensity and non-crop vegetation.

In  Fig.  6, we  address  a  pair  of  questions;  “Do  grape  qualities  vary  as  a  function  of

management intensity?” and “Does the cover of non-crop N-fixing plant species explain

some  or  all  of  the  effects  of  management  intensity.”  The  first  of  these  questions  is

represented in Fig. 6A and the lavaan code is provided in Table 4. Lavaan code is used to

specify two latent variables using the =~ operator, then to represent the hypothesis that

Grape Qualities depend on Management Intensity. We first request overall  fit  measures

using  the  “show”  command,  then  modification  indices  to  see  if  there  are  meaningful

suggestions for model improvement.

Results for the initial model (Fig. 6A) revealed substantial model-data discrepancy (Table

S2.3). Not only is the p-value for the test statistic < 0.001, the CFI value of 0.789 is well

below typical recommendations for a value of 0.95 or greater (Hu and Bentler 1999, Grace

2020).  Modification  indices  suggest  some  sort  of  a  unmodeled  relationship  between

management intensity and tartric acid. Since modification indices are best thought of as

uninformed suggestions, we must use theoretical  knowledge to decide what alternative

model would be appropriate to consider.

As illustrated in Fig. 3, one of the theoretical possibilities we might anticipate for this model

is specific  effects of  management on particular  grape qualities.  Here,  we considered a

reasonable alternative to be the addition of  a direct  effect  of  management intensity on

tartric acid (Table 4, Revised Net Effect Model). Results showed this revised model to have

near-perfect correspondence with the data (Table S2.2).

Our second question, represented in Fig. 6B, involves a mediator that might explain why

management  intensity  has  an  observed  effect  on  grape  qualities.  Steiner  et  al.  2021

 considered a number of possibilities. We do not revisit the full variety of possible mediator

models  considered  in  the  original  study,  but  focus  on  the  possibility  that  the  cover  of

nitrogen-fixing  non-crop  plants  might  explain  all  or  part  of  the  effects  of  management
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intensity  on  grape  qualities.  While  we  might  expect  to  again  find  a  specific  effect  of

management on tartric acid, we nonetheless begin with the most general version of the

mediator model shown in Fig. 6B (which we refer to as LVMed1 in Table 5.) Results again

indicate that management intensity has a specific effect on tartric acid separate from its

general effect. Once that link is included in the Revised Mediated Effect Model (LVMed2,

Table 5), fit was found to be very close (CFI = 1.0, Table S2.3).

Question #7: Can we Simplify the Model, Thereby Increasing Generality? 

Since SE models are used for explanatory representations of scientist's understanding of

systems (Grace and Irvine 2020), there are many cases where that purpose may lead

investigators to use a light hand in pruning weak effects from their models. However, when

the goal is to make general inferences, model simplicity is preferred. In the context of the

current paper, simplicity can be approached by fixing parameters to set values (such as

zero) so that model structure is maintained while the number of estimated parameters is

reduced. Fixed values of parameters represent general statements. In addition, the fewer

the  number  of  estimated  parameters,  the  greater  the  statistical  power  per  parameter

(number of observations/number of estimated parameters).

Regarding our example, we next turn to an examination of individual parameter estimates

to determine whether model simplification of model LVmed2 is possible (Table S2.4). P-

values provide strong support for all estimated lambdas (all < 0.001), as well as all other

estimated parameters, except beta1 (p = 0.713), which is the effect of the mediator Non-

Crop Vegetation on Grape Qualities. We estimated a simplified model (not shown) with

beta1 set to zero (beta1 == 0) and determined that model fit was improved, as discrepancy

increased very slightly while the number of estimated parameters was reduced by one (and

fit  is  a  measure  of  the  amount  of  discrepancy  prorata  to  the  number  of  estimated

parameters).  We  continue  discussing  ways  to  minimise  the  number  of  estimated

parameters in the next section where we address the complexity that arises when there is

more than one variety of grape being modelled.

Question #8: What About Generality Across Groups? 

LVSEM has the capacity to formally evaluate parameter equality across groups. Referred

to as multi-group analysis, the investigator can test hypotheses by asking whether models

of the same general form apply beyond single groups. With regard to the Swiss grape

study, the investigators sampled vineyards that cultivated two different varieties of grapes,

Chasselas and Pinot noir. Suppl. material 3 includes simulated data for the two varieties of

grape, as well as code for multi-group analysis.

If multigroup models are specified without constraints, all parameters will be independently

estimated for each group by default. One way to set equality constraints across groups is

to add labels to the code. In this case, one first uses the format c(“label1”, “label2”) to

create names for the parameters where there are two groups. This example will generate

two independent parameter estimates, one for each group, since the labels are unique. If

we specify c(“lambda1”, “lambda1”), the repeated use of a common label means a single

10



value will  be estimated for both groups (Table 6).  The effects of  this constraint  will  be

reflected in the model discrepancy and we can judge whether this equality constraint has a

small or large effect (Table S2.5). Adding the three constraints caused Model Degrees of

Freedom to increase by 3 (going from 4 to 7) in the constrained model. This reduction in

the number  of  estimated parameters  is  very  helpful  for  small  sample studies  because

multigroup models can contain twice as many parameters.

Using  the  approach in  Table  6,  the  results  obtained  show that  even  with  all  lambdas

constrained to be equal across groups, global model fit  is very close (CFI = 1.0, Table

S2.6). Based on this finding, we proceeded to estimate the full  model, first allowing all

gamma and beta  parameters  to  be  independent,  then adding  equality  constraints  and

revisiting model fit. Proceeding in this fashion, we arrive at the model in Table 7 and the

results are shown in Fig. 7.

Discussion

It  is important to be able to judge whether a system exhibits a generalised multivariate

response to environmental change rather than an independent collection of uncoordinated

responses.  This  paper  presents  an  approach  to  addressing  that  question.  A  particular

aspect of the approach demonstrated is that it invokes causal reasoning. We ask if suites

of  observed properties  behave as  if  they  are  jointly  influenced by  a  “hidden hand”  or

integrative cause.

Studying generalised responses is inherently challenging. Our objective is to focus our

attention on the general, while moving the specifics to the background – at least initially.

The  sequence  of  operations  described  support  a  “general  first,  specifics  second”

perspective. Ultimately, SEM forces us to address both. Along the way, we must confront

the large number of possible explanations that can exist for the actual functioning of the

system being studied. This complexity means one cannot take a rigid approach, but must

follow clues along a path to selecting a final model to use for interpretation. We suggest a

series of  questions that  can guide investigators through several  critical  steps in model

evaluation. In addition, we recognise that the research context matters, so the list may

need to be modified for particular applications.

Success in applying a flexible, adaptive approach requires a solid understanding of how

the analytical system ‘thinks’ about things. Within LVSEM, latent variables represent the

common variance or overlapping information for a set of  measures. They represent,  in

essence, the consensus opinion about the latent  factor  that  functions as their  common

causal  connection.  There  will,  of  course,  be  unique  information  associated  with  the

individual  measures,  particularly  if  they  are  selected  to  represent  multiple  facets  of  a

theoretical construct. Our core challenge is to capture the general opinions of the data

without becoming overly distracted by the unique responses.

Fig. 7 provides us with a vehicle for making some main points about the evaluation of

general responses. By including latent variables and their indicators, an explicit distinction
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between concepts of interest and the measures used to quantify those concepts is made.

This approach means that in future studies, one may retain their general hypothesis while

adapting the details of model to the particulars of the measured indicators. It also means

that we have a model that can adjust for measurement error if we choose to incorporate

that information (e.g. Grace and Keeley 2006). While Fig. 7 presents standardised results,

Table S2.7 shows that the unstandardised lambdas for Grape Qualities are equal for the

different  grape  varieties.  This  suggests  the  observed  indicators  have  physiological

meaning  at  a  fundamental  level.  Future  studies  may  wish  to  further  examine  the

physiological properties of grapes to develop a deeper understanding of the role of external

conditions on their expression.

A number of mysteries are exposed in our multigroup model (Fig. 7). For some reason, the

Chasselas variety does not respond to the abundance of nitrogen-fixing plants, while Pinot

noir is quite responsive. Beyond that, the total effect of management intensity on grape

qualities for Pinot noir is partly dependent on management through its influence on non-

crop vegetation (indirect effect: -0.47*0.59 = -0.28), but is also largely impacted through

other mechanisms (direct effect: 0.63). We might speculate that these other mechanisms

have to do with a reduction in the competitive effects of non-crop vegetation on grape

qualities, but further studies could explore that relationship in greater detail.  Finally, the

Chasselas variety exhibits a differential response of tartric acid to management compared

to the other grape properties, which suggests the need for further examination.

It  is  our  hope  that  this  paper  demonstrates  both  how  to  approach  using  LVSEM  to

investigate multivariate responses and also to hint at the variety of scientific insights that

can be gleaned from the effort. We believe there is an important opportunity for LVSEM to

play  a  greater  role  in  our  quantitative  understanding  of  ecological  responses  to

environmental change.
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Figure 1.  

Structural equation meta-model representing the general modelling goal. Note that a meta-

model is a generalisation that defines a finite set of possible fully-specified models. Dotted

outlines are used to convey that the entities represented are general concepts rather than

specific variables.
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Figure 2.  

Structural equation model representing the hypothesis that observed intercorrelations amongst

response indicator variables (1 – 4) can be explained by a common cause, the generalised

response. In contrast to Fig. 1, here we are dealing with specific variables, not concepts and

solid outlines are used to represent that difference. Ellipses or circles are characteristically

used to denote latent  variables and rectangles used to denote observed variables (Grace

2006, Chapter 4).
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Figure 3.  

Example SE model for the study of a general response to a specific perturbation and the role

of a specific hypothesised mediator variable. See text for a discussion of notation.
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Figure 4.  

Meta-model for the ecological example referenced in this paper (modified from Steiner et al.

2021).
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Figure 5.  

(A) The initial hypothesis evaluated by Steiner et al. 2021 for the Grape Qualities construct.

(B) A slightly modified hypothesis that predicts sugar and malic acids will  be more closely

associated with each other than with the other measured properties.

 

19

https://arpha.pensoft.net/zoomed_fig/6852022
https://arpha.pensoft.net/zoomed_fig/6852022
https://arpha.pensoft.net/zoomed_fig/6852022
https://doi.org/10.3897/oneeco.6.e67320.figure5
https://doi.org/10.3897/oneeco.6.e67320.figure5
https://doi.org/10.3897/oneeco.6.e67320.figure5


Figure 6.  

(A) The Net Effect Model. (B) The Mediated Effect Model.
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Figure 7.  

Standardised results for the final full model showing both groups.
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Concept of

interest 

Measurements Scientific rationale 

Management

intensity

Intensity is a three-level index {1,2,3}.

1 = minimal control of inter-row

vegetation, 2 = vegetation removal in

every other row between grape plants,

3 = vegetation removal in all rows

between grape plants.

The primary purpose of management is to reduce

competitive effects of non-crop plants on grape plants. It

is assumed that competition primarily acts through

reductions in soil water and nutrients, but other forms of

interference could be possible.

Non-crop

vegetation

properties

Plant species richness (numbers),

abundance of N-fixing plants (%

cover)

One possibility we wished to consider was a general

beneficial effect of plant richness on grape qualities due

to complementarity.

 

Another possibility of interest was a specific effect of the

abundance of N-fixing plants on grape properties due to

facilitation.

Soil nitrogen Total soil N content (%) We considered it possible that variations in total soil N

might help explain variations in grape N. Such an effect

either might or might not be indirectly related to

management intensity.

Grape qualities Nitrogen concentration

Sugar concentration

Tartaric acid

Malic acid

 

We measured a suite of standard grape chemical

parameters of importance for wine-making. While all of

these parameters determine the character of wine, N

concentration is perhaps of primary concern because of

its critical role in the fermentation process (Bell and

Henschke 2005)

Table 1. 

Concepts  related  to  the  structural  equation  meta-model  in  Figure  4  and  their  relationships  to

measured variables (from Steiner et al. 2021).
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 Nitrogen Sugars Tartric Acid Malic Acid

Nitrogen 1.00    

Sugars -0.53 1.00   

Tartric Acid 0.40 -0.36 1.00  

Malic Acid 0.61 -0.41 0.27 1.00

Table 2. 

Correlations amongst simulated indicators of Grape Qualities.
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library(lavaan)

input.cov <- '

2.602      

-1.187 1.896     

1.038 -0.781 2.536    

1.270 -0.726 0.559 1.688   

-0.592 0.451 0.147 -0.219 1.670  

0.821 -0.364 -0.455 0.578 -0.864 1.366 '

cov.dat <- getCov(input.com, names = c("N", "Sugars", "Tart", "Malic", "Nfixers", "Mgt"))

cfa1 <- 'GrapeQual =~ lambda1*N +lambda2*Sugars +lambda3*Tart +lambda4*Malic '

cfa1.fit <- sem(cfa1, sample.cov = cfa.cov.dat, sample.nobs = 50)

Table 3. 

R code for the Latent Response Model (Fig. 5A) using the lavaan software (R Core Team 2019, 

Rosseel 2012)

24



## Initial Net Effect Model 

LVNet1 <- '

GrapeQual =~ lambda1*N +lambda2*Sugars +lambda3*Tart +lambda4*Malic

ManInten  =~ lambda5*Mgt

GrapeQual ~ gamma1*ManInten'

LVNet1.fit <- sem(LVNet1, sample.cov=cov.dat, sample.nobs=50

show(LVNet1.fit); fitMeasures(LVNet1.fit, "cfi")

subset(modindices(LVNet1.fit), mi>3)

## Revised Net Effect Model 

LVNet2 <- '

GrapeQual =~ lambda1*N +lambda2*Sugars +lambda3*Tart +lambda4*Malic

ManInten  =~ lambda5*Mgt

GrapeQual ~ gamma1*ManInten

Tart         ~ gamma3*ManInten'

Table 4. 

R code for examining the Net Effect Model (Fig. 6A).
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### Initial Mediated Effect Model 

LVmed1 <- '

GrapeQual =~ lambda1*N +lambda2*Sugars +lambda3*Tart +lambda4*Malic

ManInten  =~ lambda5*Mgt

NonCrop   =~ lambda6*Nfixers

GrapeQual ~  gamma1*ManInten + beta1*NonCrop

NonCrop   ~  gamma2*ManInten'

### Revised Mediated Effect Model 

LVmed2 <- '

GrapeQual =~ lambda1*N +lambda2*Sugars +lambda3*Tart +lambda4*Malic

ManInten   =~ lambda5*Mgt

NonCrop    =~ lambda6*Nfixers

GrapeQual  ~  gamma1*ManInten + beta1*NonCrop

NonCrop    ~  gamma2*ManInten

Tart            ~  gamma3*ManInten' #added direct effect

Table 5. 

R code for examining the Mediated Effect Model (Fig. 6B).
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## CFA independence model with distinct labels for each group 

mg.mod0 <- '

GrapeQual =~ c("lambda1a","lambda1b")*N

           + c("lambda2a","lambda2b")*Sugars

           + c("lambda3a","lambda3b")*Tart

           + c("lambda4a","lambda4b")*Malic'

## CFA model with parameters equal across groups (using repeat labels) 

mg.mod1 <- '

GrapeQual =~ c("lambda1","lambda1")*N

           + c("lambda2","lambda2")*Sugars

           + c("lambda3","lambda3")*Tart

            + c("lambda4","lambda4")*Malic'

Table 6. 

Example R code for multigroup analysis of full model.
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mg.mod4 <- '

# declare latent variables

GrapeQual =~ c("lambda1","lambda1")*N + c("lambda2","lambda2")*Sugars

          + c("lambda3","lambda3")*Tart

          + c("lambda4","lambda4")*Malic

ManInten =~ c("lambda5","lambda5")*Mgt

NonCrop  =~ c("lambda6","lambda6")*Nfixers

# regressions

GrapeQual ~ c("gamma1a","gamma1b")*ManInten

          + c("beta1a","beta1b")*NonCrop

NonCrop ~ c("gamma2a","gamma2b")*ManInten

Tart ~ c("gamma3a","gamma3b")*ManInten

# set constraints

beta1a == 0

gamma3b == 0

gamma2a == gamma2b'

Table 7. 

R code for final multigroup analysis of full model.
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Supplementary materials

Suppl. material 1: A protocol for modelling generalised biological responses

using latent variables in structural equation models

Authors:  Grace JB, Steiner M

Data type:  Mathematical equations and notation for latent variable structural equation modelling.

Brief description:  This text  file contains the equations and notation mentioned in Grace JB,

Steiner M (2021) A protocol for modelling generalised biological responses using latent variables

in structural equation models. One Ecosystem

Download file (134.48 kb) 

Suppl. material 2: A protocol for modelling generalised biological responses

using latent variables in structural equation models

Authors:  Grace JB, Steiner M

Data type:  Results Tables

Brief description:  This file contains the results tables for the demonstrations included in Grace

JB,  Steiner  M  (2021)  A  protocol  for  modelling  generalised  biological  responses  using  latent

variables in structural equation models. One Ecosystem.

Download file (117.55 kb) 

Suppl. material 3: A protocol for modelling generalised biological responses

using latent variables in structural equation models

Authors:  Grace JB, Steiner, M

Data type:  R code

Brief  description:  :  This  text  file  contains  the  R  code  used  to  develop  the  demonstrations

included in Grace JB, Steiner M (2021) A protocol for modelling generalised biological responses

using latent variables in structural equation models. One Ecosystem.

Download file (8.34 kb) 
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