
An open-source, citizen science and machine

learning approach to analyse subsea movies

Victor Anton , Jannes Germishuys , Per Bergström , Mats Lindegarth , Matthias Obst

‡ Wildlife.ai, New Plymouth, New Zealand

§ Combine AB, Gothenburg, Sweden

| Department of Marine Sciences, Göteborg University, Gothenburg, Sweden

¶ SeAnalytics AB, Gothenburg, Sweden

Corresponding author: Victor Anton (victor@wildlife.ai), Matthias Obst (matthias.obst@marine.gu.se)

Academic editor: Danwei Huang

Abstract

Background

The increasing access to autonomously-operated technologies offer vast opportunities to

sample large volumes of biological data. However, these technologies also impose novel

demands on ecologists who need to apply tools for data management and processing that

are efficient, publicly available and easy to use. Such tools are starting to be developed for

a  wider  community  and here  we present  an  approach to  combine  essential  analytical

functions for analysing large volumes of image data in marine ecological research.

New information

This  paper  describes  the  Koster  Seafloor  Observatory,  an  open-source  approach  to

analysing large  amounts  of  subsea  movie  data  for  marine  ecological  research.  The

approach incorporates three distinct modules to: manage and archive the subsea movies,

involve citizen  scientists  to  accurately  classify  the  footage  and, finally,  train  and  test

machine learning algorithms for detection of biological objects. This modular approach is

based on open-source code and allows researchers to customise and further develop the

presented  functionalities  to  various  types  of data and  questions  related  to  analysis  of

marine  imagery. We tested  our  approach for  monitoring  cold  water  corals  in  a  Marine

Protected  Area  in  Sweden  using videos  from  remotely-operated  vehicles  (ROVs).  Our

study resulted in  a machine learning model  with an adequate performance,  which was

entirely  trained  with  classifications  provided  by  citizen  scientists.  We  illustrate  the

application of machine learning models for automated inventories and monitoring of cold

water  corals.  Our  approach  shows  how  citizen  science  can  be  used  to  effectively

extract occurrence  and  abundance  data  for  key  ecological  species  and  habitats  from

underwater  footage.  We  conclude that  the  combination  of  open-source  tools,  citizen
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science systems, machine learning and high performance computational resources are key

to successfully analyse large amounts of underwater imagery in the future.
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Introduction

Biological observation techniques in the marine environment need to improve radically to

serve our understanding of marine ecosystems under the influence of multiple stressors

including long-term global  change (Benedetti-Cecchi  et  al.  2018).  Over the last  decade,

biologists have gained an increased access to autonomously operated technologies for

data collection, offering the opportunity to generate enormous volumes of data. This is

especially  the  case  for  high-definition  optical  imagery  recorded  by  ROV’s  (remotely-

operated  vehicles),  AUVs  (autonomous  underwater  vehicles),  drop-cameras,  video

plankton recorders and drones (Bean et al. 2017, Danovaro et al. 2016). Although such

image-based observations may revolutionise the fields of marine biology and biodiversity

monitoring, these methods also impose completely new demands for data management

and processing on researchers.

In-situ  monitoring  systems  need to  be  coupled  to  data  services  that  allow  for  swift

exploration, processing and long-term storage (Guidi et al. 2020). Some of these services

already exist, for example, the Global Reef Record and CoralNet, which allow researchers

to  host  and  analyse  images  of  coral  reefs  (Beijbom  et  al.  2015), EcoTaxa that  offers

analysis of large amounts of plankton imagery (Picheral et al. 2017) and FathomNet, which

offers machine learning  algorithms  and  training  data  to analyse deep-sea  footage.

Although these platforms have pioneered the daily use of image analysis tools in marine

science, they may not be able to provide all the functionalities needed by the fast-growing

community of users. Some of these sought-after functions include seamless connectivity

with  project-specific  data  archives,  the  involvement  of  non-scientific  audiences  in

environmental research,  modules  that  can  be  easily  updated  to  include  state-of-the-art

analytical tools and versatile systems that researchers can easily adapt to fit to different

types of data and purposes.

Here, we present the Koster Seafloor Observatory, an open-source modular approach for

managing,  processing,  and  analysing large  amounts  of  subsea  movie  data  for  marine

ecological  research.  The  Koster  Seafloor  Observatory  allows  scientists  to  upload

underwater  footage  to  a  customised  citizen  science  website  and  then  train  machine

learning  algorithms  with  those  classifications  provided  by  citizen  scientists.  These

algorithms can be accessed through an Application Programming Interface (API) allowing

researchers  to test  the  performance  of  the  algorithms  under  different confidence  and
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overlapping  thresholds, share  their  models  with  a  wider audience  and  extract  species

observations from new footage.

Project description

Title: Mapping cold water corals in Sweden's first marine national park

Study area description:  We piloted the Koster Seafloor Observatory to extract data on

spatiotemporal distribution and relative abundance of habitat-building species from deep-

water recordings in a Marine Protected Area, the Kosterhavets National Park in Sweden.

The Park, established in 2009, contains a highly diverse and unique marine ecosystem.

The seafloor in the deeper waters of the Park has oceanic connections and hence contains

much of the bottom-dwelling fauna, which is otherwise only found in deep oceanic waters (

Lavaleye et al. 2009). This fauna includes large habitat-building species (Costello et al.

2005), such as sponges (e.g. Geodia baretti, Phakellia ventilabrum) and cold water corals

(e.g.  Desmophyllum  pertusum),  as  well  as  other  large  species  which  can  be  easily

identified  from  camera  footage  (e.g.  starfish  Porania  pulvillus,  Crossaster  papposus, 

Echinus esculentus).

Design description: The Koster Seafloor Observatory is divided into three main modules:

data management, citizen science and machine learning with high performance computing

(Fig. 1).

Module 1: Data management (Anton et al. 2019) 

In the data management module, researchers store and process the data in a way that

maximises efficiency, convenience and opportunities for sharing and collaboration. To store

and access the raw data, we use long-term and short-term storage servers. The long-term

storage server, or cold storage, archives large amounts of files that need not be accessed

frequently. In our case, these include recordings from Remotely-Operated Vehicles (ROVs)

managed by the University of Gothenburg, Sweden. The movies (mp4 and mov formats)

are on average 1-2 hours long and have been systematically collected from all expeditions

since the late  1990s (Fig.  1).  The metadata associated with  these movies is  regularly

published in the Swedish National Data Archive.

The short-term storage server, or hot storage, stores a small proportion of files that are

frequently used for analysis. Here, we transferred 60 movies from the cold storage to a

project-specific short-term storage server (Suppl. material 2). The number of movies we

selected  was  a  compromise  between  selecting  a  representative  sample and

efficiently using the limited storage of our server. This "hot server" was Linux-based and

hosted by Chalmers University of Technology, Gothenburg. The specifications of this High

Performance Computing server consisted of  a GTX2080Ti  GPU with 2 x 8 core Intel(R)

Core(TM) i9-9900 CPU @ 3.10GHz (total 16 cores) and 2GB DDR4 RAM.

We  created  a SQLite  database to  link  all  information  related  to  the  movies  and  the

classifications provided by both citizen scientists and machine learning algorithms (Fig. 1).
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The database has seven interconnected tables (Fig. 2). The “movies”, “sites” and “species”

tables have project-specific information from the underwater movie metadata, as well as

the species choices available for  citizen scientists to annotate the clips,  retrieved from

Zooniverse.  The  “agg_annotations_frame”  and  “agg_annotations_clip”  tables  contain

information related to the annotations provided by citizen scientists. The “subjects” table

has information  related  to  the  clips  and  frames  uploaded  to  the  Koster  Seafloor

Observatory. The "model_annotations" table holds information related to the annotations

provided  by  the  machine  learning  algorithms.  The  database followed the  Darwin  Core

(DwC) standards to maximise the sharing, use and reuse of open-access biodiversity data.

Module 2: Citizen science (Anton et al. 2019) 

In the citizen science module, researchers and citizen scientists work together to efficiently

and accurately annotate raw data.  To identify  the species recorded in our footage,  we

created  a  citizen  science  website. The  site  is hosted  in  Zooniverse,  the  largest  citizen

science  platform  in  the  world.  The  website  contains  rich  supporting  material  (e.g.

background, tutorials, field guides) and features two workflows that help citizen scientists

to classify biological objects in video (workflow 1) and locate these objects in still images

(workflow 2).

Workflow 1 (species identification):

Citizen scientists are presented with 10-second clips of underwater footage and need to

select at least one of the 27 available choices (Fig. 3). The choices include species of

scientific importance, animals grouped at different taxonomic levels (e.g. “gastropods” or

“fish”), as well as a few miscellaneous options (“Nothing here”, “Human objects”). If citizen

scientists select a species or animal, they also need to specify the number of individuals of

the taxon selected and the time (in seconds) when any of the individuals fully appears on

the screen.

We  compared  the  classifications provided  by  an  expert  to  those  provided  by  citizen

scientists to estimate the accuracy of citizen scientists to identify cold water corals (Table 1

).  A total  of  2,594 clips were classified both by an expert  and by eight  different  citizen

scientists. We aggregated the classifications provided by citizen scientists on a per-clip

basis  and  retained  the  classifications  of  cold  water  corals  and  grouped  the  rest

of classifications  into  "Other".  For  this  case  study,  we  chose  cold  water  corals  (

Desmophyllum pertusum) because this species has a crucial ecological role in the study

site  (Costello  et  al.  2005).  We used  a  confusion  matrix  to  understand  how agreement

amongst  citizen  scientists  correlates  to  the  accuracy  of their aggregated

classifications (e.g.  an  agreement threshold  of  80%  corresponds  to  an  agreement

on the classifications of  at  least  seven of  the eight citizen scientists  who annotated the

clip). "Adequate" accuracy of citizen scientists with respect to experts depends on multiple

parameters, including the type of data classified, the classification tool and the research

questions  (Aceves-Bueno  et  al.  2017).  In our  study,  we  decided that  at  least  80%  of

agreement  amongst  citizen  scientists  was  an  appropriate  accuracy threshold  as

it minimised the number of false positives citizen scientists provide.
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Workflow 2 (object location):

Citizen scientists are presented with a still image of the species of interest. To annotate the

image, citizen scientists need to draw rectangles around the individuals of the species (Fig.

4). If citizen scientists are not able to identify any individual of the species of interest in the

frame,  they will  not  draw any rectangle.  Each still  image is  annotated by at  least  five

different citizen scientists before it is “retired” from the website.

We used a four-stage video processing framework to upload clips and still images to the

Koster Seafloor Observatory and download the annotations provided by citizen scientists

(Fig. 5).

• Stage 1: Generate and upload clips (Fig. 5, circle a). In this stage, we split the +1

hour long movies into 10-second clips. After the clips were created, we randomly

selected 5,702 clips from the original 60 movies and uploaded them to workflow 1

of the Koster Seafloor Observatory.

• Stage 2: Process clip annotations (Fig. 5, circle b). We retrieved the annotations

provided  by  citizen  scientists  in  workflow 1  and aggregated  them on  a  per-clip

basis. To aggregate workflow 1 annotations, we grouped the annotations each clip

received and retained only those choices that were selected by at least 80% of the

citizen scientists  who  annotated the  clip.  In  our  study,  there  were  194  clips  for

which cold-water coral was identified at least by 80% of the citizen scientists. We

also averaged the answers from citizen scientists to the question "When is the first

time the species appears fully in the video?".

• Stage 3: Generate and upload frames (Fig. 5, circle c). We extracted up to three

frames per clip from the 194 clips containing cold water corals and extracted one

frame per second after the first time the species fully appeared in the clip. After

extracting 533 frames, we then uploaded them to workflow 2 of the Koster Seafloor

Observatory.  Five  different  citizen  scientists  per  frame  annotated  the  location

of cold water corals in the still images.

• Stage  4: Process  frame  annotations  (Fig.  5,  circle  d).  We  retrieved  workflow

2 annotations provided by citizen scientists and aggregated them on a per-frame

basis. To aggregate workflow 2 annotations, we retained the area of overlapping

between those rectangles drawn by 80% of the citizen scientists who annotated the

frame. A total of 409 of the 533 frames had matching rectangles drawn by 80% of

the  citizen scientists.  We  formatted  the  aggregated  annotations appropriately to

train YOLOv3 algorithms (Redmon and Farhadi 2018)

Module 3: Machine learning and High Performance Computing (Germishuys et al.

2019) 

In the machine learning and High Performance Computing module, researchers train, test

and  expose  state-of-the-art  machine learning  models.  The  aggregated  citizen  scientist

annotations are used to train object-detection models that track and identify the species of

interest. In our case study, we used 409 user-annotated ground-truth frames obtained from

workflow  2  (Suppl.  material  1)  to  train  an  algorithm to  identify  cold  water  corals.  We
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augmented this data by using a frame tracker which filled subsequent movie frames with

bounding  boxes  with  the  highest  probability  of  containing  the  object  of  interest.  This

typically  increased the  amount  of  data  by  a  factor  of  10.  The  frames  were  then  pre-

processed  to  remove  background  distortion  because colours  often  lose  intensity

underwater, mainly due to poor visibility. Three datasets were then created, one for training

the model, another for validation (which is used to tune the model hyperparameters) and,

finally,  a  testing set.  Once the data  were prepared,  the model  training was done until

satisfactory  metrics  were  achieved on  evaluation  measures  (i.e.  F1  =  0.970,  Recall  =

0.962, Precision = 0.979 and mAP@0.5 = 0.962).

We made the trained model available through an application programming interface (API),

where it can be used by researchers to run predictions of the species of interest in new

recordings (Fig. 1). To this end, we used FastAPI (Ramírez 2020) as it provides the speed,

scalability and reliability required to have multiple users making use of the service at the

same time. The API was also supplied with a user-friendly front-end, using the Streamlit (

Teixeira 2020) framework, allowing a broader audience of scientific users (i.e. ecologists,

ROV and  AUV-pilots,  students)  to  access  the  service  through  a  web  application.  The

interface allows researchers to browse through already-classified footage or to upload their

own footage as either images or video. Once the media has been uploaded/selected, users

are able to manipulate hyperparameter thresholds (IOU threshold, confidence threshold)

and interactively see the impact on the model output. The API is described by Germishuys

et al. (2019).

We compared manual observations of cold water corals provided by an expert to those

provided by  our  machine learning model to  estimate  the accuracy of  the  model  under

different  confident  thresholds  (Table  2).  Both  expert  and model

classified movies corresponding to 132 squares of a spatial grid within the National Park

into "Coral" and "No coral" (i.e. presence/absence of cold water corals). To estimate the

final classifications of the machine learning model, we aggregated the raw model output,

containing coral  observations  for  each  frame  under  0.5,  0.7  and  0.9  confidence

thresholds, into  periods  in  which the  species  was  continuously  observed  with  >  50%

overlap  between  consecutive  bounding  boxes.  These  aggregated

observation periods described the first  and last  frame in which coral  was visible (Suppl.

material  3).  If aggregated observation periods were within the footage corresponding to

one square, the square was classified as Coral. We used confusion matrices to estimate

the accuracy of the machine-based classifications under the different thresholds. The best

accuracy for our case study was achieved with a confidence threshold of 0.7.

The last component of this module is a data visualisation toolkit that enables researchers

to explore and visualise the ecological  data extracted from the outputs of  the machine

learning model. In our case, we mapped the cold water coral annotations provided by the

expert and the machine learning model with a 0.7 confidence threshold (Fig. 6). Our results

highlight that machine learning models with a relatively high confidence threshold are well-

suited for automated monitoring of cold water coral over large areas.

Discussion 
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The functionalities of the Koster Seafloor Observatory have been tested in the present

case  study,  which illustrates  the  scientific  potential  of  this open-source  and  modular

approach.  Our approach  can  be  used  to  extract  ecological  data  on  abundance  and

distribution for many benthic species from underwater recordings. Underwater footage is

today routinely collected by many research institutes, which may allow for a concerted

analysis of such data over broad spatial and temporal scales in the future. Such analyses

may calculate data products for biological state variables on regional or even global level,

so-called Essential Biodiversity Variables or EBVs (Pereira et al. 2013, Hardisty et al. 2019

). A recent study by Kissling et al. (2018) suggests that image-based sensor networks are

promising candidates for EBVs, while many other studies highlight the potential of these

methods for marine monitoring programmes (Mack et al. 2020, Lopez-Vazquez et al. 2020

).  Our  case  study  provides  empirical  support  that  these  methods  are  ready  for

implementation in national monitoring programmes and that useful data products can be

derived  from  image-based  sensors,  especially  in  marine  environments  which  are

particularly difficult to access and survey.

In order to scale up analysis of underwater imagery in the future to extract ecological data

for larger regions, longer time periods and more species,  several  technical  bottlenecks

have  to  be  addressed.  Data  archiving  functions can  fall  under  organisational  or

governmental responsibilities and  may  not  be  fulfilled  by  a  single  global  system.

Consequently, most underwater recordings are currently locally archived and cannot be

discovered.  Here,  further  work  is  needed  to  promote  the  use  of  open  interoperable

archives  and  data  portals  (e.g.  European  Marine  Data  Archive,  EMODnet  portal)

that enable researchers  to adequately  publish  metadata  associated  with  underwater

recordings.  Another  important  technical  bottleneck  is  the  disconnection  between  many

essential  data  services  that  need  to  interact  to  successfully  analyse  image  data.  We

suggest  that  seamless  links  should  be  developed  especially  between  citizen  science

platforms (for  training  of  machine  learning  models)  and  high-performance  computation

services (for extracting ecological data from large amounts of imagery). Regional, national

and  global research  infrastructures  should  take  a  leading  role  in  this  development  to

overcome current technical challenges.

Funding: The project was funded by Ocean Data Factory, an expert network supported by

grants from Sweden’s Innovation Agency (grant agreement no. 2019-02256), the Swedish

Agency for Marine and Water Management (grant agreement no. 956-19) and the Swedish

Research Council (through Swedish LifeWatch grant agreement no. 829-2009-6278). The

presented work was furthermore supported by the NeIC programme DeepDive and the

Horizon 2020 project ENVRIplus (grant agreement no. 654182).

Web location (URIs)
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7

https://mda.vliz.be/
https://www.emodnet-biology.eu/
http://oceandatafactory.se
https://www.havochvatten.se/en/start.html
https://www.havochvatten.se/en/start.html
https://www.vr.se/english.html
https://www.vr.se/english.html
https://neic.no/
https://www.zooniverse.org/projects/victorav/the-koster-seafloor-observatory/about/results
https://www.zooniverse.org/projects/victorav/the-koster-seafloor-observatory/about/results


Usage licence

Usage licence: Creative Commons Public Domain Waiver (CC-Zero)

IP rights notes: Our approach is open for use in research, as well as public and academic

education for analysis of community composition in marine ecosystems.
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Figure 1.  

High-level overview of the three main modules and the components of the Koster Seafloor

Observatory.

 

11

https://arpha.pensoft.net/zoomed_fig/6077182
https://arpha.pensoft.net/zoomed_fig/6077182
https://arpha.pensoft.net/zoomed_fig/6077182
https://doi.org/10.3897/BDJ.9.e60548.figure1
https://doi.org/10.3897/BDJ.9.e60548.figure1
https://doi.org/10.3897/BDJ.9.e60548.figure1


Figure 2.  

Entity relationship diagram of the SQLite database used by the Koster Seafloor Observatory.
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Figure 3.  

Screenshot of the Zooniverse annotation interface. On the left, display of the clips. On the

right, species choices available.

 

13

https://arpha.pensoft.net/zoomed_fig/6077170
https://arpha.pensoft.net/zoomed_fig/6077170
https://arpha.pensoft.net/zoomed_fig/6077170
https://doi.org/10.3897/BDJ.9.e60548.figure3
https://doi.org/10.3897/BDJ.9.e60548.figure3
https://doi.org/10.3897/BDJ.9.e60548.figure3


Figure 4.  

Example of a frame containing cold water coral displayed to the citizen scientists (left) and the

same frame with annotated rectangles provided by a citizen scientist (right).
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Figure 5.  

Four-stage video processing framework used to identify species of interest.
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Figure 6.  

Comparison of manual and machine learning model-based spatial distribution of cold water

coral in the reef area Säcken in Kosterhavets National Park, Sweden. Spatial distribution is

based  on  coral  observations  in  ROV  movies corresponding  to 132  squares  of  the spatial

grid. Confidence threshold (Conf) for the model is set to 0.7. Grid size 5 m.
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 Cit. Sci. Agr. ≥ 80% Cit. Sci. Agr. ≥ 60% Cit. Sci. Agr. ≥ 40% 

Coral Other Coral Other Coral Other 

Expert Coral 111 467 315 263 475 103

Other 2 2014 22 1994 84 1932

 

Table 1. 

Confusion matrices derived from applying different citizen scientists agreement thresholds (Cit.Sci.

Agr.) when comparing expert classifications to citizen scientist classifications of 2,594 underwater

videos.  Each  video  was classified  by  an  expert  and  eight  different  citizen  scientists.

Classifications of  cold  water  coral  were  retained  and  all  other  classifications  were  grouped as

"Other". Expert classifications were compared to citizen scientist classifications with at least 80%,

60%  and  40%  of agreement  amongst  their  responses (i.e.  an  agreement threshold  of  80%

corresponds to an agreement on the classifications of at least seven of the eight citizen scientists

who annotated the clip).
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 ML confidence = 0.5 ML confidence = 0.7 ML confidence = 0.9 

Coral No coral Coral No coral Coral No coral

Expert Coral 54 15 52 17 28 41

No coral 13 50 5 58 1 62

Table 2. 

Confusion matrices derived from applying different confidence thresholds (ML confidence) when

overlaying manual with machine-based observations in movies corresponding to 132 squares of a

spatial grid within the Kosterhavets National Park, Sweden. Detailed metadata for these recordings

are provided in Suppl. material 3.
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Supplementary materials

Suppl. material 1: Dataset of underwater images of Desmophyllum pertusum 

Authors:  Victor Anton, Jannes Germishuys, Per Bergström, Mats Lindegarth, Matthias Obst

Data type:  images, zipped

Brief  description:  Instances  of  Desmophyllum  pertusum used  to  train  Koster  YOLO

machine learning model.

Download file (33.28 MB) 

Suppl. material 2: Metadata for movies used in the case study

Authors:  Victor Anton, Jannes Germishuys, Per Bergström, Mats Lindegarth, Matthias Obst

Data type:  table with occurrences

Brief  description:  This  file  contains  metadata  from the  movies  used to  test  the  model  and

illustrate  its  application.  To  access  the  movie  data  files,  contact  the  authors  or  search  the

filenames in the Swedish National Data Service: https://snd.gu.se/en/catalogue/study/snd1069.

Download file (21.34 kb) 

Suppl. material 3: model results

Authors:  Victor Anton , Jannes Germishuys , Per Bergström , Mats Lindegarth , Matthias Obst

Data type:  table

Brief description:  Model output from analysis of the selected movies in Supplementary material

2. Explanation of variables: FilenameInThisStudy (movieID), frame_no_start (frame number when

the object was detected for the first time), frame_no_end (frame number when the object was

detected for the last time), max_conf (highest confidence value achieved by the object throughout

the consecutive frames), x (x-position of the upper-left corner of the bounding box with the highest

confidence value),  y  (y-position of  the upper-left  corner  of  the bounding box with the highest

confidence value), w (width of the bounding box with the highest confidence value), h (height of

the bounding box with the highest confidence value).

Download file (9.54 kb) 
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