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Abstract

Scholarly publications of biodiversity literature  contain  a  vast amount of information in

human readable format. The detailed morphological  descriptions in  these publications

contain  rich  information  that can  be  extracted  to  facilitate  analysis  and  computational

biology research. However, the idiosyncrasies of morphological descriptions still pose a

number of challenges to machines. In this work, we demonstrate the use of two different

approaches  to  resolve  meronym (i.e. part-of)  relations  between  anatomical  parts  and

their  anchor  organs,  including  a  syntactic rule-based  approach  and  a  SVM-based

(support vector  machine)  method. Both  methods made  use  of domain  ontologies. We

compared  the  two  approaches  with  two  other  baseline  methods and  the  evaluation

results show the  syntactic methods (92.1% F1 score) outperformed the  SVM methods

(80.7% F1 score) and the part-of ontologies were valuable knowledge sources for the

task. It  is  notable  that the  mistakes  made  by  the  two  approaches  rarely  overlapped.

Additional tests will  be conducted on the development version of the Explorer of Taxon

Concepts toolkit before we make the functionality publicly available. Meanwhile, we will

further  investigate  and  leverage  the  complementary  nature  of the  two  approaches to

further drive down the error rate, as in practical application, even a 1% error rate could

lead to hundreds of errors.
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Background

Using  the  large  volumes of information  contained  in  biodiversity  literature, we  aim to

provide scientists with rich computable data so they can build a more complete tree of

life,  predict  the  causal  genes  for  wider  ranges  of  diseases/conditions,  derive  better

models of the decline of species populations and improve climate change predictions.

Biodiversity literature contains various descriptive information on extinct and extant taxa,

including  habitat, distribution, phenology, ecology, physiology and morphology. In  this

work, we are primarily concerned with making the information contained in morphological

descriptions  more  accessible to  machines.  One  way  to  accomplish  this  is  to  extract

character  information  from  descriptions  into  a  structured  format,  such  as  taxon-by-

character matrices. This work involves linking a structure/organ (e.g. leaf or stem) with its

properties (e.g. colour, shape, orientation etc., often  called  “characters” in  systematics

biology),  as  described  in  the  literature  (Dececchi  et  al.  2015).  While  developing  the

Explorer  of  Taxon  Concepts  (ETC)  toolkit web  application (Cui  et  al.  2016),  we

encountered  the  challenge  of  resolving  “orphaned”  parts  extracted  by  the  ETC  Text

Capture tool. The orphaned parts occur because taxonomic descriptions often include a

large set of terms, representing non-specific structural parts, such as base, apex and tip.

In this paper, we refer to such terms as non-specific structure (NSS) terms. They are non-

specific because  these terms  stand  alone  and  do  not  correspond  to  any  identifiable

organ; instead, they could be part of a number of different organs. For example, leaf, stem

and petal could each have an apex, therefore apex is a NSS. When a NSS is linked to its

parent organ,  as  in leaf  apex,  it  represents  an  independent  entity  and  we  say  it  is

resolved. Extracting character information about such structures requires the machine to

bridge the non-specific structures with their anchor organs. Following Poesio and Vieira’s

work (Poesio and Vieira 1998), the term anchor is used as a generalisation of the term

antecedent to indicate the discourse entity to which an anaphoric expression is related,

regardless  of  its  relative  location. For  example,  associating  apex  acuminate with  its

appropriate  organ,  leaf,  produces  a  complete  and  accurate  character  leaf  apex 

accuminate.

In  computational  linguistics,  this  problem  is  treated  as  a  subclass  of  the  bridging

reference problem, whose resolution requires not only finding the anchor in the text to

which the bridging reference is related, but also identifying the relationship between them

(Sindner 1979, Poesio and Vieira 1998, Clark 1975, Grosz 1977, Hawkins 1978, Fraurud

1990).  Characterised  by  the  relationship  between  the  reference  and  the  anchor,  a

bridging reference may be classified as an anaphoric reference or associative reference;

in the former case, the reference and the anchor denote the same entity (e.g. Mr. Smith

and he), while in the latter case the two entities are associated. In the case of associative

references, further distinction can be made based on the relation, for example, synonyms,

hypernyms, hyponyms or meronyms (Poesio and Vieira 1998). In our study, we focus on

mereological bridging references because the relationships between bridging references

and  anchors  in  this  case  are  part-of  relationships.  Resolving  part-of  relationships
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amongst anatomical structures is already needed to extract phenotypic characters from

vast  amounts  of  taxonomic  descriptions  continuously  being  published  in  human

languages.

An illustrative example of our task is given below:

Leaflets articulated, inserted  near  the  edges of the rhachis towards  the  adaxial

side, lacking a differently coloured basal gland; stomata on lower surface only or

on both surfaces; epidermal cells elongated parallel to long axes of leaflets.

In  this  example,  the  goal  is  to  associate  edges,  adaxial  side,  lower  surface,

surfaces, cells and long axes  with  their  anchors  (parents)  rhachis,  leaflets,  leaflets, 

leaflets, epidermal and leaflets, respectively.

This  paper  reports  the  evaluation  of  two  methods  we  developed  to  resolve  NSS in

taxonomic descriptions. We start by giving a formal task definition and then, in the Data

Resources section, we describe the corpus, datasets and ontologies used to develop and

evaluate the methods. After introducing the two methods, we present evaluation results.

We conclude the paper with future directions for research.

Task definition

Morphological  descriptions of the biodiversity domain pose a number of challenges to

existing natural language processing (NLP) algorithms. Thessen et al. (2012) identified

three characteristics about morphological  descriptions that make them difficult to parse

using existing methods: 1) Specialised language is used and a large number of terms are

not contained in pre-compiled lexica. Ambiguity is also more prevalent in biological text

than texts from other domains (Chen et al. 2004). In  addition, there is a  heavy use of

abbreviations in  life  science  literature. 2)  Morphological  descriptions are  very diverse

amongst and  within  taxon  corpora. 3)  The  syntax of morphological  descriptions often

differs from standard syntactic structure in English, i.e. a telegraphic sub-language that

lacks verbs is used. The ETC toolkit (http://etc.cs.umb.edu/etcsite) is the only web-based,

publicly  accessible  application  to  our  knowledge  that  extracts  character  data  from

organismal  morphological  descriptions to  support biological  research. The  toolkit has

been used by biology research projects, for example, the extraction of phenotypic traits

for  the  tree  of  life  (Endara  et  al.  2018),  the  Building  a  Comprehensive  Evolutionary

History of Flagellate  Plants project (US NSF DEB-1541506), the Botanical  Knowledge

Portal  project (co-sponsored  by  Agriculture  and  Agri-Food  Canada)  and  the  Flora  of

North America project.

Although  natural  language  processing  tools  and  algorithms  have  been  successfully

implemented  in  various  tasks,  bridging  references  are  considered  one  of  the  most

challenging problems in discourse analysis since the knowledge about the events and

natural objects required to identify each relation goes beyond the text itself (Clark 1975).

While  various work has been published  on  this subject (Poesio  et al. 2004, Bunescu

2003, Fan et al. 2005), most of those efforts used traditional linguistic methods rather than
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machine-learning approaches. We are not aware of open source algorithms that resolve

meronym associative reference problems in taxonomic descriptions. Our work represents

a small but solid contribution to this area.

Given a short piece of text (one or a few sentences) from a morphological description that

contains some NSS terms, our task was to  resolve  the  NSSs, i.e. identify  the  anchor

(parent) structure for each NSS. More formally, given a set of NSS-terms A = {a , a , a ,

…, a } and a text segment W = {w , w , w , ..., w } consisting of n tokens, for any given w

=a  and, amongst all semantically valid part-of relations (w , w ), our task was to find the

specific w  that would resolve w  as the intended independent entity described by the

description.

Data resources

A total of 7562 sentences from 3876 morphological description files of 11 taxon groups

were extracted from various taxonomic data sources we have collected in  prior years,

including Plazi.org and the Flora of North America (FNA). A list of 39 NSS terms pertinent

to these descriptions was created by domain experts. Table 1 shows the NSS terms along

with the number of occurrences in the corpus.

An initial  dataset consisting of 169 sentences were randomly selected from taxonomic

descriptions of ants, mushrooms and plants with 389 NSS term occurrences. This was

used as the dataset to develop the two methods reported in this paper. To expand the

taxon  and  NSS terms coverage, another  167  sentences were  sampled  in  a  stratified

random manner  from the  corpus  to  form  the  test  dataset;  sentences  were  randomly

selected from all 11 taxon groups and each sentence contained at least one NSS term.

366 NSS term occurrences were in the test dataset. Sentences containing target anchors

were  added  if  they  were  not  sampled  in  the first  round.  After  the data  collection

procedure, sentences that contained both NSS term(s) and target anchor(s) were treated

as statements. The composition  of the  training  and test datasets is shown in  Table  2.

Statements in the development dataset and test dataset did not overlap.

Generation of the annotated evaluation datasets 

The evaluation datasets (development and test) needed to be annotated with NSSs and

their anchor organs. This was done semi-automatically. The fine-grained morphological

character extraction system ETC Text Capture tool (Cui et al. 2016) was used to annotate

all  structures (i.e. biological  entities, e.g. elytron), characters (e.g. shape, rounded) and

relationships, including preposition and verb phrases in the statements (e.g. on primary

stem). Since the raw annotations did not resolve NSSs, the annotations contained NSS

structures as independent biological entities without their anchor structures. Statements

with raw annotations were the input for the algorithms.

For  performance  evaluation,  NSS-terms  in  both  datasets  were  manually  resolved  by

adding anchor organs to the NSS-terms. Fig. 1 shows an example of raw annotations and

the  annotated  answer  key  (gold  standard).  The  annotations  were  completed  by  one

1 2 3  
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author and the gold standard was hidden from algorithm developers until the algorithms

were ready for evaluation.

The NSS Ontologies 

Anatomical  and  phenotype  character  ontologies  are  being  created  by  bioinformatics

communities to generate computable data and support integration of data silos (Köhler et

al. 2016, Hoehndorf et al. 2016). Ontologies carry useful  knowledge often not explicitly

stated  in  morphological  descriptions (Huang  et  al.  2015).  To  enable  intelligent

organisation and use of organism-based morphological information, ontologies need to

be  created  on  a  per  domain  basis  since  research  on  different taxon  groups  employ

different  vocabularies  and  new  terminology  is  constantly  encountered  (Cui  2010).  In

terms  of  non-specific  structures  resolution,  different  domains  also  use  various  non-

specific structures. For example, in the domain of botany, body is a non-specific structure,

while in insects or some single-cell organisms, body is a specific structure as there is only

one body. Following previous research on domain ontology building (Chong et al. 2017),

we used the Ontology Building tool in the ETC toolkit to create domain ontologies. The

reason for creating task-specific ontologies, instead of using existing ontologies, such as

Biological Spatial Ontology or Plant Ontology, is that existing formal ontologies often do

not include non-specific structures. For part-of relationships to  be  included in  a  formal

ontology, the related entities must meet the so-called 'all some' rules. To say apex is part

of leaf in a formal ontology, all apices must be part of some leaves. However, this is not

true for all  cases (e.g. an apex  could  be a  stem  apex), so  this relationship  cannot be

included in a formal ontology (e.g. the Plant Ontology). In general, non-specific structures

are not included in OBO Foundry (Open Biological  and Biomedical  Ontology Foundry)

ontologies for this reason. The ontologies we created in our task only specify that an apex

could be part of a leaf and an apex could be part of a stem. The soft constraints in our

ontologies express the potential  of part-of relationships and the algorithms to act upon

those possibilities and select the most likely parent structure.

In this experiment, the tool was used by the same author who subsequently annotated

the  answer  keys  to  create  ontologies  holding  part-of  relationships  amongst  various

biological  structures  for  the  development  and  test  data,  respectively. Taking  the

statement in Fig. 1 as an example, we used the tool to first add the structures elytron, side

, tip, elytron side and elytron tip into the ontologies and then linked the terms with part-of

and subclass relationships (e.g. elytron side is a subclass of side and a part-of elytron). A

two-month  gap  separated  each  of  the  ontology  building  events  and  gold  standard

annotation to control for any potential confounding between the ontologies and the gold

standard. A  total  of  488/540  unique  structures  (including  organ  and  NSS-terms)  and

392/351 part-of relationships were created in the development/test versions of the NSS

ontologies.

Methods
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Syntactic rule method

This  method  took  advantage  of  the  syntactic  parsing  results  embedded  in  the  raw

annotation of the input and utilised a set of simple rules to resolve the NSSs (i.e. finding

the  anchor organ  for  a  NSS). Four rules were  used: (1)  biological  entity terms within

three-sentence  boundaries  of a  NSS were  considered  candidate  anchor  organs  (i.e.

window  size  =  3);  (2)  part-of  relationships  generated  by  the  ETC  Text  Capture  tool

through  the  of-phrases  containing  a  NSS term,  such  as  “base of  the  leaves”; (3)

possession words around a NSS-term, such as “with”, “contain” and “have”; (4) the NSS

ontologies.

Method 1 shows the pseudocode to obtain the mereological bridging references for NSS

terms  in  each  statement.  First,  it  defined  a  queue  to  store  all candidate  anchor

terms (i.e. biological  entities, including  all  structure  terms extracted  by ETC) marked  in

one statement. It then sorted the NSS terms based on the order of their appearance in the

queue and stored them into a list. For each NSS term in the list, it initialised a stack and

pushed the  current  NSS  term  to  the  stack_NSS-to-be-resolved.  The  algorithm then

used each  rule  in  the  list of rules [(2), (3), (1)] to  find  the  candidate  anchor  term that

satisfied one of the above rules (see #9 in pseudocode) and appeared in the ontology

(#12). The list of rules [(2), (3), (1)] was ordered by their confidences (i.e. the  order of

confidences in  rules for our task were: of-phrase > possession words > window size).

Specifically,  the  algorithm  first  found  any  candidate  anchor term  in queue_terms  that

satistified  both  the  of-phrase  rule  (2)  and  the  ontology rule  (4). If either  rule  was not

satisfied, it continued checking rules (3) and (4) and then rules (1) and (4). The NSS-term

was resolved if the above procedures returned any candidate anchor term, otherwise a

null value was returned. 

We also implemented a recursive approach to resolve bridging reference cases where

multiple  NSS terms  were  involved,  such  as  “abdomen  has  a  thin  edge  at  its  upper

margin”; here, the anchor term of “edge” is “upper margin” which itself is also a NSS. To

handle such situations, before the algorithm returns the candidate anchor term, it checks

whether the candidate term is one of the NSS terms. If the answer is true, the algorithm

then saves the relationship of the current NSS term and the candidate term (the new NSS

term) and recursively finds the anchor term for the new NSS term until the new candidate

anchor term is determined to be not a NSS. For the above example, the algorithm found

the anchor term of “edge” to be "upper margin", which is also a NSS term. The algorithm

then pushed the "upper margin" into the stack_NSS-to-be-resolved and resolved the new

NSS  term  "upper  margin".  After  finding  the  anchor  term  of  "upper  margin"  to  be

"abdomen",  the  algorithm updated  the  anchor  term of  "edge"  to  be  "abdomen  upper

margin".

#1 Initialize NSS Ontology, queue_terms, list_NSS-terms

#2 for entity in sentence do   //store all biological entities: #2-#4
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#3       insert entity into queue_terms

#4 end for

#5 list_NSS-terms = get_NSS(queue_terms) //obtain all NSS mentions

#6 for each NSS-term in list_NSS-terms do //resolve NSS term: #6-#28

#7     initialise stack_NSS-to-be-resolved

#8     push NSS-term to stack_NSS-to-be-resolved     

#9     for each rule in rules [(2), (3), (1)] do

#10        for term in queue_terms do

#11            if rule(term, NSS-term) then //rules for terms: #11-#25

#12                if (term, NSS-term) in Ontology then

#13                  if term is not in NSS-terms then//recursion: #13-23 

#14                      while stack_NSS-to-be-resolved is not empty do

#15                         NSS-term ← pop(stack_NSS-to-be-resolved)

#16                         anchor (NSS-term) ← term

#17                         in list_NSS-terms delete NSS-term

#18                         term ← term + NSS-term   

#19                  else:

#20                         push term to stack_NSS-to-be-resolved

#21                         NSS-term ← term

#22                         goto #9

#23                  end if                                          

#24                end if

#25            end if

#26        end for

#27    end for

#28 end for
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Method  1  Mereological  Bridging  Reference  using  Syntactic  Rules  and  the  NSS

Ontologies.

This method and one variation of it were eventually evaluated. The variation resolves a

NSS using  a  NSS ontology and  the  constraint of window  size=3  (rules 1  and  4)  and

ignores  the  part-of  and  possession  clues (rules  2  and  3). The  source  code  for  the

Syntactic  Method  can  be  found  at  https://github.com/biosemantics/charaparser/tree/

master/enhance.

Support vector machine

Support vector machine (SVM) functioning as a classifier remains an effective, low cost

and robust method for many NLP tasks, especially for problems with a small number of

training instances (Zeng et al. 2014, Moraes et al. 2013).  We followed a common relation

extraction  strategy  and  framed  the  mereological  bridging  reference  resolution  as  a

pairwise relation classification problem. Our classifier used three groups of features:

1. Distance and position features: the indicator of whether the anchor term was the

subject of a  sentence/clause; the indicator of whether the anchor term was the

closest term to the NSS term; absolute distance between the two structure terms in

a statement; relative distance between the two structure terms in a statement (i.e.

the  absolute  distance  divided  by  the  number  of  tokens  in  a  statement);  the

absolute number of structure term(s) between the two structure terms; the relative

number  of structure  term(s)  between  the  two  structure  terms (i.e. the  absolute

number divided by the number of structures in a statement).

2. Bag-of-word features: the indicators of whether the connectors between the term

pairs were in the set of “in, on, at, of, has, have, with, contains, without”; tokens

themselves  before  and  after  both  structure  terms in  a  certain  context window,

excluding the connectors listed above.

3. Semantic features: the indicator of whether the term pairs appeared in the NSS

ontology; the indicator of whether the anchor term was a NSS.

We used the LIBSVM implementation (Chang and Lin 2012) to train a SVM classifier to

output  probability  estimates  for  each  NSS-term and  anchor  term pair.  The  predicted

anchor term for each NSS term, i.e.   was selected from the

pair which had the maximum probability amongst all term pairs, formally defined below:

            

where  is the set of biological  entity terms within one statement, excluding the NSS

term  which  is  to  be  resolved  and   is a  probability  function

which calculates  the probability of   being  the anchor  term of the  . We

used 5-fold cross validations to adjust the following parameters for the best performance:

the word frequency threshold was set to 9 and the context window to 4 for the bag-of-

word  features;  class-weight  was  set  as  7  to  handle  the  unbalanced  classes;  we
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experimented with multiple kernels and selected the polynomial kernel function with the

degree set to 3; other parameters were set to their default.

This method and one variation  of it were  evaluated. The variation  used features from

groups 1 and 2, leaving out the semantic features. The source code of the SVM method

can be found at https://github.com/biosemantics/SVM-for-Nonspecific-Structure.

Two baselines: subject entity and closest entity

Two additional baseline algorithms were also implemented and evaluated. For each NSS

term, the first baseline algorithm (Baseline 1) always chose the subject entity term (i.e. the

first  entity  appearing  in  a  statement) as  its  anchor  term,  while  the  second  baseline

algorithm (Baseline 2) always identified the closest entity term around the NSS term as its

anchor term. Taking the example from the Background section, NSS term edges would be

linked to leaflets using the Baseline 1 algorithm or linked to rhachis using the Baseline 2

algorithm. 

Evaluation metrics

The  four  methods  and  two  variations  were  evaluated  using  precision,  recall  and  f1

metrics, which are routinely used in information retrieval and information extraction tasks.

Precision (P), recall (R) and f1 (F1) are formally defined below:

                                                

                                                

                                                

where S is the set of anchor terms identified by the system and H is the set of anchor

terms annotated in the gold standard.

Results and discussion

We compared the different methods described in the Methods section. Table 3 shows the

best performance results using the development dataset and the final results using the

test dataset. First, it is evident that naive approaches such as the baseline methods were

not sufficient to solve the problem, as they achieved F1 scores of 42.3% (Baseline 1) and

33.2% (Baseline 2).

Second, we  found  the  syntactic  approach  outperformed  the  SVM method  by  a  large

margin. For example, the best syntactic approach achieved an F1 score of 92.1%, while

the best SVM model achieved an F1 of only 80.7%. This may be due to the small training

size provided to the SVM. From a practical  point of view, it was not realistic to request

that domain scientists annotate large sets of training examples. In contrast, they are more
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likely to construct an ontology that can be reused to process future descriptions and solve

other related problems, such as extracting phenotypes.

Third, we found ontologies were reliable knowledge sources in resolving orphaned parts

in  morphological  descriptions.  Using  an  ontology  alone,  the  syntactic  rule-based

approach  achieved  an  F1  score  of  91.4%.  Using  an  ontology  also  improved  SVM

performance by 20 percentage points for the F1 score. The syntactic rules (of-phrases

and possession words) seem to  be useful  for the rule-based method, but using these

rules with an ontology only improved the F1 score by 0.7% and, when considering the

366 test examples, their effects on reference resolution were unclear since the results

may have been confounded by usage of an ontology. We are  planning to  evaluate  a

second variation of the rule-based method using only the rules and not an ontology to

further examine the effects of these rules.

Our  error  analysis  showed  that  the  syntactic  method  and  the  SVM  method were

complementary to each other, as the mistakes made by the two methods were largely

disjoint. Fig. 2 shows the error distribution between the best performances of the SVM

and syntactic methods. Amongst 366 NSS terms to be resolved, the SVM method made

65 mistakes while the syntactic method made 32 mistakes, but they were both incorrect in

only 7 of the same cases. 

Conclusions and future work

With the results from the dataset covering a wide range of descriptions, we can tentatively

conclude that the syntactic rule method is what the ETC toolkit will adopt, given that ETC

toolkit already provides a user-friendly ontology building tool  for domain scientists and

students  to  create  ontologies. However,  in  the  immediate  future,  it  is  worthwhile  for

additional  testing  on  the  development version  of  ETC  toolkit  before  we  make  the

functionality publicly available and to further investigate and leverage the complementary

nature of the syntactic rule method and the SVM method to minimise the error rate, as in

practical application NSS, terms are commonly used in morphological descriptions and

even a 1% error rate could lead to numerous errors.
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Figure 1.  

An example showing raw annotations (top) and gold standard annotations (bottom).
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Figure 2.  

Error distribution between the best performances of the SVM and syntactic methods.

 

14

https://arpha.pensoft.net/zoomed_fig/4311180
https://arpha.pensoft.net/zoomed_fig/4311180
https://arpha.pensoft.net/zoomed_fig/4311180
https://doi.org/10.3897/BDJ.6.e26659.figure2
https://doi.org/10.3897/BDJ.6.e26659.figure2
https://doi.org/10.3897/BDJ.6.e26659.figure2


NSS term count NSS term count NSS term count NSS term count 

apex 511 centre 52 groove 350 protuberance 8

appendix 13 chamber 14 layer 25 remnant 28

area 476 component 7 line 163 section 112

band 114 concavity 2 margin 2419 side 609

base 684 content 22 middle 271 stratum 2

belt 2 crack 8 notch 80 surface 959

body 1171 edge 258 part 264 tip 82

cavity 148 element 63 pore 101 wall 23

cell 120 end 166 portion 240 zone 51

centre 49 face 727 projection 37    

Table 1. 

Non-specific structure terms and their occurrence in the corpus.
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Taxon Total Number of

Sentences 

Development

Dataset 

(# of statements) 

Test Dataset 

(# of

statements) 

Ants 866 21 20

Bees 2189 18 21

Birds 516 13 10

Diatoms 503 13 18

Ferns 630 15 7

FNA v-5 (pink, leadwort and buckwheat

families)

 

686

 

13

 

9

Gymnodinia 206 10 13

Mushrooms 815 26 35

Nematodes 604 15 18

Sponges 92 13 5

Weevils 455 12 11

Total 7562 169 167

Table 2. 

Development and test datasets composition.
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Methods F1 (Development) P (Test) R (Test) F1 (Test) 

Baseline 1 (subject entity) 63.9% 42.3% 42.3% 42.3%

Baseline 2 (closest entity) 30.3% 33.2% 33.2% 33.2%

Syntactic (ontology only) 91.1% 92.2% 90.5% 91.4%

Syntactic (all rules) 93.7% 93.0% 91.3% 92.1%

SVM (feature groups 1 and 2) 76.1% 60.9% 60.9% 60.9%

SVM (all features) 89.6% 80.7% 80.7% 80.7%

Table 3. 

Performances of  the  Baseline,  Syntactic and  SVM  Methods Using  the Development  and  Test

Datasets. 
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