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Abstract

Indo-China floristic region is among the 34 richest floristic regions of the world, and its

plant diversity is still under investigation. Here we report a new record of an aquatic plant,

Potamogeton distinctus, from Myanmar, a part of the region, that is detected by means of

DNA barcoding method. The molecular method further identified the other specimens as

hybrids of Potamogeton: one is P. ×malainoides (P. distinctus × P. wrightii), and the other

is P. distinctus × P. nodosus. The first of these was thus far genetically confirmed in China,

but the parental combination of the hybrid in Myanmar was reciprocal to those reported

from China. The second hybrid was also recorded from China, but the maternal lineage

was revealed for the first time, in this case it was P. distinctus. The present study showed

that 1)  nrITS is  useful  to  distinguish  closely  related  Potamogeton species as well  as

hybrids among them and 2) atpB-rbcL has higher utility than other frequently used plastid

DNA markers. We  thus propose  nrITS and  atpB-rbcL as  DNA barcoding  markers  for

future Potamogeton studies.
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Introduction

With  many  Southeast  Asian  countries  included,  Indo-China  is  among  the  34  richest

floristic regions of the world  (Van Dijk et al. 2004), and its plant diversity is still  under

investigation. In the region, Myanmar is one of the countries where the floristic work has

been insufficiently carried out, so many new species or noteworthy plant collections are

still being reported from that country (Tanaka 2005). In order to explore further diversity of

the  flora, the  present study targeted  plant species that have  not been  recorded  from

Myanmar but are widely recognized in its neighbouring countries, such as southern part

of China and Thailand. A member of an large aquatic genus, Potamogeton L., P.distinctus

A. Benn. is one of these species.

Potamogetondistinctus is among the broad-leaved long-petioled Potamogeton species

that is widely distributed in East Asia and Southeast Asia, including the southern part of

China and Thailand (Wiegleb 1990). Both the only floristic checklist of Myanmar and the

first  aquatic  plants  checklist  of  Myanmar  do  not  include  this  species  but  lists

morphologically similar other broad-leaved long-petioled species, P.nodosus Poir. and P.

wrightii Morong  (Kress et al. 2003, Ito  and  Barfod  2014). Whereas the  other reported

Potamogeton species from Myanmar can be easily distinguished from P.distinctus, e.g.,

by  the  shape  of  submerged  or  floating  leaves,  the  two  broad-leaved  long-petioled

Potamogeton can  only  be  recognized  with  floral  morphology  because  the  reliable

diagnostic character of P.distinctus is the flower with two carpels, which is four-carpellate

in the other species (Wiegleb 1990); this characteristic, of course, could not be applied to

non-flowering  specimens, which  many of Potamogeton collections from Myanmar are.

This indicates that P.distinctus might be misidentifed as one of the other broad-leaved

long-petioled Potamogeton species and thus overlooked in the flora.

Potamogeton is known to have aneuploidy, polyploidy, and hybridization (Les 1983). The

different cytotypes, i.e., aneuploids and polyploids, are phylogenetically well clustered (

Kaplan et al. 2013); hence no inter-specific taxonomic confusions occur by aneuploidy

and polyploidy. On the other hand, the known numerous inter-specific hybrids may cause

a confusion, because the hybrids are in most cases difficult to recognize solely based on

morphological  investigation  (Les  et  al.  2009).  In  Myanmar,  although  no  natural

Potamogeton hybrids  have  been  reported,  among  the  listed  nine  species  and  two

synomyous ones by Kress et al. (2003) or six species by Ito and Barfod (2014) are P.

nodosus and P.wrightii, both of which are known to hybridize with P.distinctus in China (

Du et al. 2010). Hence, taxonomic confusion might have occurred in the inventory of P.

distinctus in Myanmar with  apparent hybridiｚations with  the other broad-leaved long-

petioled Potamogeton species.

In such cases, analysis of plant DNA sequence data can provide an effective method, that

is known as DNA barcoding (e.g., Chase et al. 2005, Kress et al. 2005, CBOL Plant

Working Group 2009). This method was initially launched to target diverse plant groups

with universal DNA markers, e.g., flowering plants (trnH-psbA and the multi-copy internal
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transcribed spacer of nuclear ribosomal DNA (nrITS): Kress et al. 2005), vascular plants (

matK + rbcL: Saarela  et al. 2013), or  land  plants (matK + rbcL: CBOL Plant Working

Group 2009). Recently the applications of DNA barcoding shifted to target narrow plant

groups with respective unique DNA markers, e.g., Compsoneura of Myristicaceae (matK

+  trnH-psbA:  Newmaster  et  al.  2008),  Combretaceae  (trnH-psbA:  Gere  et  al.  2013),

Hymenophyllaceae (rbcL, trnSGG, and trnH-psbA: Nitta 2008), mosses (trnH-psbA and

rps4:  Liu  et  al.  2001),  Phoenix of  Arecaceae  (psbZ-trnfM:  Ballardini  et  al.  2013),  or

Viburnum of Adoxaceae (trnH-psbA and nrITS: Clement and Donoghue 2012). Barcoding

studies occasionally lead to discoveries of new records of plants species from surveyed

regions (Liu et al. 2001, Nitta 2008). In Potamogeton, four candidate DNA markers were

tested and of these nrITS was proposed as the most useful DNA barcoding marker (Du et

al. 2011). The nuclear DNA marker would be applicable for any purposes because almost

all Potamogeton species as well as hybrids were distinguishable with this marker (e.g.,

Du  et  al.  2010,  Ito  and  Tanaka  2013,  Kaplan  and  Fehrer  2011,  Les  et  al.  2009).

Meanwhile, in  order to  understand precisely the apparent hybridization events, plastid

DNA (ptDNA) markers should be simultaneously applied, so that maternal phylogenetic

information  would  be  available  (Kaplan  and  Fehrer  2006).  The  candidate  markers

included atpB-rbcL (Ito et al. 2007), rpl20-rps12 (Kaplan and Fehrer 2011), and trnT-trnL, 

trnL, trnL-trnF (Ito and Tanaka 2013).

The present study aimed to  assess the  potential  occurrence of Potamogetondistinctus

and its inter-specific hybrids, if any are  present, in  Myanmar. To  do  so, we  applied  a

taxon-specific DNA barcoding method. First, in  order to  evaluate  the utility of selected

DNA barcoding markers, we performed simultaneous molecular phylogenetic analyses

based on a sample set of precisely identified broad-leaved long-petioled Potamogeton

specimens, occasionally suplimented with some GenBank accessions. Then, using the

DNA  barcoding  markers,  we  assigned  broad-leaved  long-petioled  Potamogeton

specimens from Myanmar, which could not be identified by morphology due to either the

lack of diagnostic floral  characters or intermediate vegetative morphology or both. The

resulting  molecular  insights  of  broad-leaved  long-petioled  Potamogeton species  in

Myanmar will be used to document a new record of Potamogeton species for the flora of

Myanmar, to discuss the origin and the evolution of hybrids of Potamogeton in Myanmar,

and to propose DNA barcoding markers for future Potamogeton studies.

Materials and methods

Plant material

We  carried  out  a  field  expedition  to  Myanmar  in  2008  and  collected  four  relevant

specimens,  i.e.,  broad-leaved  long-petioled  Potamogeton specimens,  including  three

non-flowering and one flowering ones in Shan state (Table 1). None of the specimens

could  be  morphologically  identified  as  any  of  three  broad-leaved  long-petioled

Potamogeton species potentially distributed in Myanmar (P.distinctus, P.nodosus, and P.

wrightii) due to either the lack of diagnostic floral  characters or intermediate vegetative
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morphology or both. The morphological  characters of the unidentified specimens were

summarized to facilitate comparison with the three Potamogeton species (Table 1).

To evaluate the utility of selected DNA barcoding markers through performing molecular

phylogenetic analyses, comparative materials of Potamogetondistinctus, P.nodosus, and

P.wrightii were collected in Japan, Mexico, and Thailand (Table 2). As we failed to collect

hybrids of P.distinctus, the nrITS data sets of two Potamogeton hybrids were obtained

from  GenBank:  P.×malainoides Miki  ( P.distinctus ×  P.wrightii)  and  P.distinctus ×  P.

nodosus ( Du  et  al.  2010).  Besides,  two  outgroup  species  were  selected  following

Lindqvist et al. (2006) and included into the sample set; those were P.lucens L. and P.

perfoliatus L. Note that four out of the six comparative materials were previously used for

molecular phylogenetic analyses (Ito and Tanaka 2013).

The voucher specimens are retained in either of the following herbaria: BKF; MBK; RAF;

TI; TNS. Those of Du et al. (2010) are kept in HIB. Sequences were deposited at the DNA

Data Bank of Japan (DDBJ) and their accession numbers and voucher information are

given in Table 2.

DNA extraction, amplification and sequencing

For the newly obtained samples, total  genomic DNA was extracted and sequencing of

five plastid regions was performed using the procedure outlined by Ito et al. (2010). For

the sequencing, previously used accessions were occasionally involved. We selected the

following DNA regions that were used in previous molecular studies of Potamogeton as

DNA barcoding markers: atpB-rbcL (Ito et al. 2007), rpl20-rps12 (Kaplan and Fehrer 2011

), trnT-trnL, trnL, trnL-trnF (Ito and Tanaka 2013, Zhang et al. 2008), and nrITS (e.g., Du et

al. 2010, Ito and Tanaka 2013, Kaplan and Fehrer 2011, Les et al. 2009). The atpB-rbcL

(seven  samples),  rpl20-rps12 (nine),  trnT-trnL (four),  trnL (five),  and  trnL-trnF (five)

regions of chloroplast DNA were amplified and directly sequenced using primers atpB-2F

and  rbcL-2R  (Manen  et al.  1994)  for  atpB-rbcL (779–787  bp), rpl-20  and  5'-rps-12  (

Hamilton 1999) for rpl20-rps12 (794 or 813 bp), and Po-trnT2F (Ito and Tanaka 2013)

and “b” (Taberlet et al. 1991) for trnT-trnL (807–809 bp), “c” and “d” (Taberlet et al. 1991)

for trnL intron (593 bp), and “e” and “f” (Taberlet et al. 1991) for trnL-trnF (403 bp). Note

that trnT-trnL was missing from Potamogeton sp. (N. Tanaka & al. 080662).

Sequences of the nrITS were obtained using primers ITS-4 and ITS-5 (Baldwin 1992)

under the same conditions used for the phyB amplification in Ito et al. (2010). The total

length was 713 bp. On direct sequencing of ten samples, overlapping double peaks were

found  at the  same  sites  for  complementary  strands  in  the  electropherograms. These

products were cloned using a TOPO TA Cloning kit for Sequencing (Invitrogen, Carlsbad,

California, USA). At least 16 clones per sample were chosen and their sequences were

determined using the same procedure as that used in the first PCR followed by direct

sequencing. For  the  cloned  sequences, nucleotides  that were  not detected  by  direct

sequencing were regarded as PCR errors.
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Data analysis

Sequences of the atpB-rbcL,rpl20-rps12, trnT-trnL, trnL, trnL-trnF, and nrITS regions were

manually aligned  using  the  simple  indel  coding  method  of Simmons and  Ochoterena

(2000).  Gaps  associated  with  mononucleotide  repeat  units  were  removed  from

consideration  in  the  phylogenetic  analysis  because  of problems related  to  homology

assessment (Kelchner 2000) and because technical artifacts might be responsible for the

variation (Clarke 2001). One representative sequence was used for accessions having

the identical combined sequence.

Phylogenetic analyses were independently performed for data sets of ptDNA (atpB-rbcL, 

rpl20-rps12, trnT-trnL, trnL, trnL-trnF) and nrITS, respectively. Phylogenetic inference was

performed  using  maximum  parsimony  (MP)  in  PAUP*  4.0b10  (Swofford  2002)  and

Bayesian  inference  (BI;  Yang  and  Rannala  1997)  in  MrBayes  3.1.2  (Ronquist  and

Huelsenbeck 2003) as described by Ito and Tanaka (2013); the only differences were the

best-fit model  for BI analysis on ptDNA (F81) and nrITS (HKY). The Bayesian Markov

Chain Monte Carlo algorithm was run for 1 million generations for both ptDNA and nrITS

data sets. Four incrementally heated chains were used that started from random trees

and sampled one out of every 100 generations. The first 25% of the sampled generations

(250,000 generations for each data set, respectively) were discarded as burn-in, and the

remaining  trees  were  used  to  calculate  a  50%  majority-rule  consensus  tree  and  to

determine posterior probabilities for branches. The data matrices and the MP trees are

available from the TreeBASE (S14928).

Taxon treatment

Potamogeton distinctus A. Benn. 

Materials    

a. country: Myanmar; stateProvince: Shan; verbatimLocality: Yae Aye Kan; Kalaw; 

verbatimLatitude: 20 35 41 N; verbatimLongitude: 96 31 46 E; eventDate: 26 Nov 2008; 

recordedBy: Y. Ito; collectionID: N. Tanaka & al. 080061; institutionCode: MBK, RAF, TI; 

occurrenceID: 46183C6C-00CC-5DDD-B024-938508603862 

b. country: Myanmar; stateProvince: Shan; verbatimLocality: Nyaun Shwe; Inlay Lake; 

verbatimLatitude: 20 32 02 N; verbatimLongitude: 96 53 53 E; eventDate: 3 Dec 2008; 

recordedBy: Y. Ito; collectionID: N. Tanaka & al. 080657; institutionCode: MBK, RAF, TI; 

occurrenceID: C0AC3726-5C68-5822-B4BE-94AF0CAE01B8 

Distribution

?Bhutan, China (nationwide), Korea, Japan, Myanmar, Nepal, ?Philippines, Thailand,

?Vietnam (modified from Wiegleb 1990).
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Taxon discussion

Potamogeton distinctus shows a wide range of phenotypic plasticity, especially in leaf

morphology. It seems to be that the two-carpellate flower, the diagnostic character of

the  species,  is  essential  for  precise  morphological  identification  in  the  field;

identification with vegetative morphology alone is to be avoided (see Discussion).

Analysis 

Molecular phylogenetic analyses based on ptDNA and nrITS

The  length  of the  combined  five  ptDNA regions alignment containing  ten  accessions

totaled 3456 bp, of which two characters were parsimony-informative. Based on this data

set, one MP tree (tree length = 27 steps; consistency index = 1.0; retention index = 1.0)

and  a  BI  50%  consensus  tree  were  obtained.  These  trees  showed  congruent

phylogenetic relationships and thus only the MP tree is presented here (Fig. 1).

The length of nrITS alignment composed of 20 accessions totaled 645 bp, of which six

characters were  parsimony-informative. In  the  phylogenetic analysis of nrITS data  set,

one MP tree (tree length = 43 steps; consistency index = 1.0; retention index = 1.0) and a

BI 50%  consensus  tree  were  obtained. These  trees  showed  congruent phylogenetic

relationships and thus only the MP tree is presented here (Fig. 1).

In both ptDNA and nrITS trees, the three morphologically closely related species were

well  differentiated  from  one  another.  With  Potamogetonlucens and  P.perfoliatus as

outgroup, P.wrightii and the clade of P.distinctus and P.nodosus were clustered (63 MP

bootstrap (BS), 1.0 BI posterior probability (PP) in ptDNA; 87 MP BS, 1.0 PP in nrITS).

Potamogetonnodosus from Mexico and P.nodosus-related nrITS sequence of P.distinctus

× P.nodosus HDZY5-7  showed  variation, yet the  two  sequences were  clustered  each

other (62 MP BS, 0.99 BI PP). GenBank accessions of P.×malainoides and P.distinctus ×

P.nodosus (Du et al. 2010) have diverged heterogeneous nrITS sequences, and non-

hybrid species have homogenous nrITS sequences (Fig. 1).

DNA  barcoding  for  broad-leaved  long-petioled  Potamogeton specimens
from Myanmar

Of the four broad-leaved long-petioled Potamogeton specimens from Myanmar, two were

genetically identical to P.distinctus from Japan and Thailand (N. Tanaka & al. 080061, N.

Tanaka & al. 080657; Figs 2, 3). Another specimen had P.wrightii haplotype and both of

the heterogeneous nrITS sequences of P.×malainoides (N. Tanaka & al. 080631; Fig. 4);

the  other  of  the  remaining  two  exhibited  P.distinctus haplotype  and  both  of  the

heterogeneous nrITS sequences of P.distinctus × P.nodosus (N. Tanaka & al. 080662;

Fig. 5).
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Utility of DNA barcoding markers for Potamogeton species

The  combined  five  ptDNA regions were  separately analyzed  to  facilitate  the  utility  as

individual  DNA markers. The  comparison  included nrITS. Between the  closely related

species, Potamogetondistinctus and P.nodosus, where two nucleotide substitutions were

observed  in  nrITS,  atpB-rbcL exhibited  one  nucleotide  substitution,  while  trnT-trnL

showed  a  difference  in  mononucleotide  repeat  unit  (Tables  3,  4).  Among  the  three

species, in  which ten nucleotide substitutions were found in  nrITS, atpB-rbcL included

one length  variation  (indel)  and  two nucleotide  substitutions; trnT-trnL region  had two

mononucleotide repeat units, in which repeat numbers are differed.

Discussion 

In order to assess the potential  occurrence of Potamogetondistinctus and its hybrids, if

any are present, in Myanmar, the present study applied a taxon-specific DNA barcoding

method. The simultaneous molecular phylogenetic analyses successfully distinguished

broad-leaved long-petioled Potamogeton species, P.distinctus, P.nodosus, and P.wrightii,

as well as hybrids among them, P.×malainoides (P.distinctus × P.wrightii) and P.distinctus

× P.nodosus (Fig. 1). The  obtained  phylogeny is  congruent with  the  nuclear  5S-NTS

phylogeny of Lindqvist et al. (2006), the only molecular phylogeny that resolves the three

Potamogeton species  relationships.  Below  we  will  document  a  new  record  of

Potamogeton species for the flora of Myanmar, discuss the origin and the evolution of

hybrids of Potamogeton in  Myanmar, and  propose  DNA barcoding  markers for  future

Potamogeton studies.

Potamogeton nodosus, a new record for the flora of Myanmar

Applying the comparative samples’ sequence data as DNA barcodes, the broad-leaved

long-petioled Potamogeton specimens from Myanmar were genetically assigned. As a

result,  two  out of  four  specimens  were  identified  as  P.distinctus,  a  widely  distributed

species in East Asia, Southeast Asia and the Pacific, including southern part of China

and Thailand, but not in Myanmar (Wiegleb 1990). Here we document a new record for

the flora of Myanmar.

Hybridization among broad-leaved long-petioled Potamogeton species in
Myanmar

The  taxon-specific  DNA  barcoding  also  revealed  two  hybrids  of  Potamogeton in

Myanmar, and among which was P.×malainoides (P.distinctus × P.wrightii). This hybrid is

known from China (Du et al. 2010), yet a difference is found between the Chinese and

Myanmar  cases  in  maternal  lineage:  Potamogeton×malainoides from  China  has  P.

distinctus as a maternal parent (Du et al. 2010), but that from Myanmar has P.wrightii as a

maternal parent. This kind of reciprocal hybridizations occasionally occur in Potamogeton
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, i.e., P.×anguillanus, P.×fluitans, P.×inbaensis, P.×lanceolatifolius, P.×sudermanicus, and

P.×suecicus (reviewed in Ito and Tanaka 2013). In terms of morphology, P.×malainoides

in Myanmar showed both P.distinctus character, i.e., larger number of leaf veins, and that

of P.wrightii, i.e., the acute to acuminate leaf tip (Table 1), and no major differences are

found between the reciprocal  hybrids (Du et al. 2010). In  other cases of Potamogeton

hybrids,  reciprocal  hybrids  are  partly  distinguishable,  e.g.,  reciprocal  P.×anguillanus

shows no differences in morphology but exhibited differences in drought tolerance (Iida

et al. 2007); P.×inbaensis with different maternal lines is roughly distinguishable by leaf

morphology (Amano et al. 2008).

The other hybrid of Potamogeton identified in Myanmar is P.distinctus × P.nodosus. This

hybrid is also known from China, yet no maternal lineage was conclusively identified in

the previous study (Du et al. 2010). The present study successfully identified P.distinctus

as the maternal lineage of this hybrid for the first time. From the morphological point of

view,  it  is  difficult  to  evaluate  the  morphological  intermediacy  between  the  parental

species as both species show large phenotypic plasticity in quantitative morphology, e.g.,

leaf petiole length.

Utility of DNA barcoding markers for Potamogeton species

Du  et al.  (2011) reported  that nrITS is  the  most useful  marker  for  DNA barcoding  of

Potamogeton. The present study verified its utility by distinguishing three closely related

species, P.distinctus, P.nodosus, and P.wrightii, as well  as hybrids among them (Fig. 1,

Table  3).  Meanwhile,  in  order  to  understand  hybridization  events  precisely,  we

simultaneously used plastid DNA markers, including those used in previous molecular

studies, i.e., atpB-rbcL (Ito et al. 2007), rpl20-rps12 (Kaplan and Fehrer 2011), and trnT-

trnL,  trnL,  trnL-trnF ( Ito  and  Tanaka  2013,  Zhang  et  al.  2008).  Given  that  atpB-rbcL

showed higher utility than the others (Table 4), here we propose nrITS and atpB-rbcL as

DNA  barcoding  markers  for  Potamogeton species.  Note  that  trnT-trnL has  similar

resolution  to  distinguish  closely  related  Potamogeton species, yet the  differences are

found only in mononucleotide repear units, which technical artifacts might be responsible

for the variation (Clarke 2001).

The  taxon-specific  DNA  barcoding  method  presented  here  will  be  applicable  in

elucidating further diversity of Potamogeton in  other floras. With  some modification on

marker selection, this method will be also applicable for floras that focus on other taxa.
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Figure 1.  

The most parsimonious trees of Potamogeton based on (A) the combined plastid DNA (atpB–

rbcL, rpl20–rps12, trnT–trnL, trnL, trnL–trnF) sequences and (B) nrITS sequences. Each one

of the two outgroups is trimmed to clarify ingroup phylogeny. ACCTRAN optimisation is used

for  branch  length  measures;  terminals are  aligned  with  dotted  lines.  Numbers above  the

branches indicate bootstrap support (BP)  calculated in the maximum parsimony, and those

below indicate Bayesian posterior probabilities (PP). Samples in regular and bold face indicate

comparative  ones and  those  from  Myanmar,  respectively.  Some  accessions in  each  tree

represent multiple identical accessions. Note that some samples have heterogeneous nrITS

copies; for these, the sequence pairs are named #1 and #2, respectively, and colored in red.
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Figure 2.  

A voucher specimen of Potamogeton distinctus (N. Tanaka & al. 080061).
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Figure 3.  

A voucher specimen of Potamogeton distinctus (N. Tanaka & al. 080657).
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Figure 4.  

A voucher specimen of Potamogeton ×malainoides (N. Tanaka & al. 080631).
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Figure 5.  

A voucher specimen of Potamogeton distinctus × P. nodosus (N. Tanaka & al. 080662).
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taxon P. 

distinctus

P. nodosus P. 

wrightii

Potamo‐

geton sp.

(N. Tanaka

& al.

080061)

Potamo‐

geton sp.

(N. Tanaka

& al.

080657)

Potamo‐

geton sp.

(N. Tanaka

& al.

080631)

Potamo‐

geton sp.

(N. Tanaka

& al.

080662)

Characters

Carpel number 2 4 4 N/A N/A 4 N/A

Leaf tip Round Round Acute Round Round Acute Round

Floating leaf vein 11-21 11-21 9-13 13-18 10-12 14 9-13

Petiole length

(Submerged leaves)

Petioled Unpetioled N/A Petioled Petioled Petioled Petioled

Petiole length

(Submerged leaves)

1-200 mm 1-200 mm 2-70

mm

25-30 mm 40-50 mm 80-100 mm 25-30 mm

Petiole length

(Submerged leaves)

1.5-2.3 x

length of

blade

0.2-1.5 x

length of

blade

N/A 0.2-0.3 x

length of

blade

0.7-0.8 x

length of

blade

0.8-1.0 x

length of

blade

0.2-0.4 x

length of

blade

Petiole length

(Floating leaves)

80-260 mm 18-210 mm N/A 45-85 mm 15-30 mm 85-120 mm 75-120 mm

Petiole length

(Floating leaves)

up to 400

mm

up to 200

mm

up to

200

mm

a,b,c,d

a,b,c,d

c,d

a

b

d

b

c

Table 1. 

Morphological comparison  among  the  four  Potamogeton specimens collected  in  Myanmar  and

three  broad-leaved  long-petioled  Potamogeton species  potentially  distributed  in  Myanmar  (a:

Wiegleb 1990; b: Wiegleb and Kaplan 1998; c: Wiegleb 2002; d: Guo et al. 2010).
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Accession Locality Voucher atpB-rbcL rpl20-rps12 trnT-trnL trnL trnL-trnF nrITS

INGROUP

P. distinctus

Japan YI01686

(TNS)

AB871488 AB871498 AB744025 AB744013 AB744019 AB744007

Thailand YI01729

(BKF)

AB871490 AB871500 AB871505 AB871511 AB871517 AB871525

Myanmar N. Tanaka &

al. 080061

(RAF, TI,

MBK)

AB871483 AB871491 AB871501 AB871506 AB871512 AB871518

Myanmar N. Tanaka &

al. 080657

(RAF, TI,

MBK)

AB871485 AB871493 AB871503 AB871508 AB871514 AB871519

P. nodosus

Mexico YI01195

(TNS)

AB871487 AB871497 AB871504 AB871510 AB871516 AB871524

P. wrightii

Japan YI00048

(TNS)

AB206988 AB871495 AB695139 AB695131 AB695135 AB206991

P. ×

malainoides

China HDZY8

(HIB)

N/A N/A N/A N/A N/A FJ956881

FJ956882

Table 2. 

List of the GenBank accessions of atpB–rbcL, rpl20–rps12, trnT–trnL, trnL, trnL–trnF, and nrITS

for ingroup and outgroup of Potamogeton species used in the phylogenetic analyses. Sequences

obtained in the present  study are shown in underline.  Note that  four  Myanmar  specimens are

identified by DNA barcoding (see Discussion). Herbaria abbreviations: Forest Herbarium, Bangkok,

Thailand  = BKF;  Wuhan  Institute  of  Botany,  Hubei,  People's Republic of China  = HIB;  Kochi

Prefectual Makino Botanical Garden, Kochi, Japan = MBK; Forest Research Institute, Pyinmana,

Myanmar  = RAF,  The University of  Tokyo Herbarium,  Tokyo,  Japan = TI;  National Museum of

Nature and Science, Tsukuba, Japan = TNS.
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Myanmar N. Tanaka &

al. 080631

(RAF, TI,

MBK)

AB871484 AB871492 AB871502 AB871507 AB871513 AB871520

AB871521

P. distinctus × 

P. nodosus

China HDZY5

(HIB)

N/A N/A N/A N/A N/A FJ956875

FJ956876

China HDZY6

(HIB)

N/A N/A N/A N/A N/A FJ956877

FJ956878

China HDZY7

(HIB)

N/A N/A N/A N/A N/A FJ956879

FJ956880

Myanmar N. Tanaka &

al. 080662

(RAF, TI,

MBK)

AB871486 AB871494 N/A AB871509 AB871515 AB871522

AB871523

OUTGROUP

P. perfoliatus Japan YI01687

(TNS)

AB871489 AB871499 AB744026 AB744014 AB744020 AB744008

P. lucens Japan YI00049

(TNS)

AB206987 AB871496 AB695137 AB695129 AB695133 AB206990
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Taxon nrITS

14 21 55 426 436 444 480 561 571 579

P. distinctus T C T C A G T G G T

P. distinctus × P. nodosus T C T C A G T G G T

T C T G C G T G G T

P. nodosus (Mexico) T C T G C G T G A C

P. wrightii G A A C C A A A G T

P. ×malainoides T C T C C A T G G T

G A A C C A A A G T

Table 3. 

Comparison of the ITS sequences of the three broad-leaved long-petioled Potamogeton species

and hybrids used in the phylogenetic analysis. Note that substitutions observed at 571 bp and 579

bp are due to apparent infra-specific variation in P. nodosus.
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Taxon atpB-rbcL trnT-trnL

380-383 547 563 403-405 507-514

P. distinctus ATTT A G T (3) A (8)

P. nodosus ATTT A C T (2) A (8)

P. wrightii ------ C G T (2) A (7)

Table 4. 

Comparison of  the atpB-rbcL and trnT-trnL sequences of  the three broad-leaved long-petioled

Potamogeton species and hybrids used in the phylogenetic analysis.
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