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Abstract

The  landscapes  in  the  Hinh  River  Basin  are  crucial  and  highly  sensitive  to  climate

change for the coastal province of Phu Yen and the entire south-central coastal region of

Vietnam, offering vital environmental services to its downstream areas. Hinh River Basin

has a rich system of rivers and streams and abundant surface water resources. However,

it remains one of the region's top localities at risk and a very vulnerable region. This study

aims to evaluate the changes in landscape (LC) over 10 years (2010-2023) and predict

LC  over  the  next six  years using  machine-learning  (ML)  algorithms on  Google  Earth

Engine. To achieve these study goals, we establish: (i) potential  environmental fragility

(PEF) levels based on: terrain slope; geological domains; river hierarchy; percentage of

sand in soil; annual mean precipitations; and (ii) emergent environmental fragility (EEF)

levels  through  the  addition  of  LC  parameter  to  model.  The  methodology  includes

integrating the Analytic Hierarchy Process (AHP) into a Geographic Information System

(GIS). Results show that three LC types (water, annual industrial crop, forest) are related

to  extremely  high  EEF.  The  predictive  model  suggests  that,  by  2030, the  forest  and

annual industrial crop LCs in the study area will increase by around 20%. The analysis

results show that there has been an increase in the area of planted forests, which can

confirm the futher effectiveness of agricultural, forestry, afforestation and forest protection

programmes  in  the  study  area  (Plan  for  the  implementation  of  forestry  development

strategy for the period 2021-2030, with a vision to 2050, Phu Yen Province, N  126/KH-

UBND 13/7/2021; and Decision on the approval of the project for planting 15 million trees

in Phu Yen Province for the period 2021-2025, N  1646/QĐ-UBND 16/11/2021).
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Introduction

Managing  land  cover and  landscape  (LC) in  the  Basin  is  becoming  an  urgent issue,

particularly  in  ensuring  fair  uses without harming  the  external  environment (Liu  et al.

2008). Hinh  River’s  landscape  is  an  important part not only of the  central  regions of

Vietnam, but also of the entire landscape of Phu Yen Province. This area provides many

essential  environmental  services  and  offers  greater  benefits  than  direct  resource

exploitation,  such  as  hydropower  and  climate  regulation.  Besides  the  environmental

services provided by the Hinh River landscape, the forested areas help absorb carbon,

contributing to the fight against global warming.

One of the main causes of climate change is the expansion of human activities. The Hinh

River  landscape  has  been  facing  this  issue,  largely  related  to  drought  and  food

imbalance  (due  to  crop  failure) (Pham et al. 2022, Nga  et al. 2023). Additionally, the

growing  focus  on  agricultural  development, coupled  with  increased  urbanisation  and

rising population pressures, along with  the diminishing availability of arable  land, has

created substantial challenges. These factors have collectively contributed to significant

and rapid alterations in the regional landscape. The expansion of agricultural activities

and urban areas has transformed natural environments, leading to noticeable changes in

land-use  patterns  and  ecosystem  dynamics.  The  combination  of  these  pressures

highlights the  urgent need  for sustainable land-management practices to  address the

environmental impacts and ensure balanced development in the region (Phan et al. 2021

, Pham et al. 2021).

In recent years, especially since 2010, the rate of deforestation in the Hinh River area has

tended to decrease and, therefore, LC changes need to be studied to detect trends in

land-use changes up to 2030 and beyond. Nowadays, multistrata farming has become

one of the  main  economic activities in  Hinh  River Basin (Chuong  et al. 2015). These

activities  assist  residents  in  stabilising  cultivation,  limiting  forest  encroachment  and

reducing forest burning and destruction. However, the increase in agricultural land area

raises  concerns  about  potential  environmental  fragility  (PEF),  which  is  determined

through environmental factors such as terrain slope; geological domains; river hierarchy;

percentage of sand in soil; and annual mean precipitations. Assessing LC changes using

high-resolution  satellite  images such  as Landsat, Sentinel  and  analytical  tools on  the

Google Earth Engine (GEE) platform has become common. The LC map and PEF results

were integrated into the evaluation model of the emergent environmental fragility (EEF) (

França et al. 2022).
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Many studies provide useful solutions for large-scale monitoring of land-use status in the

area, especially forest and water LC (Floreano and de Moraes 2021). Through research

on environmental fragility (EF), zoning for potential environmental fragility (PEF) supports

local  managers  in  planning  development  policies  for  each  area  within  the  territory.

Studies also reflect the vulnerability of artificial  LC (Amorim et al. 2021). These results

can provide a crucial basis for proposing solutions to mitigate impacts on protected water

and  forest LC  supported  by Junior  and  Röhm (2014). Ecological  regions are  distinct

areas  defined  by  ecological  zone  classifications,  where  anthropogenic  components

interact  with  environmental  ones  (Blasi  et  al.  2014).  These  classifications  guide

sustainable  management  (FAO  2000),  provide  a  framework  for  conserving  natural

resources and evaluate the fragility zoning. They support biodiversity conservation, forest

evaluations,  climate  change  studies  and  protected  area  planning.  Ecoregion  fragility

depends  on  ecological  susceptibility  and  anthropogenic  pressure,  both  of  which  are

quantitatively measurable.

PEF depends on LC units and relates to susceptibility to soil erosion, land degradation,

sediment deposition  or  geological  activities  leading  to  LC  degradation  (França  et al.

2022). PEF allows for evaluating the natural dynamic balance of a geological system. It

considers the natural  attributes of LC (e.g. geological  regions, soil, rainfall, slope, river

systems), while  emergent environmental  fragility  (EEF) results  from applying  potential

fragility and land-use cover. The variables used assess both natural and human-induced

hazards (Mastronardi et al. 2022). This model assigns weights to spatial data, ensuring

higher consistency in the analysis process (Junior and Röhm 2014). AHP analysis allows

experts  to  evaluate  the  weight of factors  employed  in  constructing  the  PEF and  EEF

maps (França et al. 2022).

Based on previous literature reviews, this study presents a new dimension, which also

represents a gap in current research that has yet to be addressed or thoroughly explored:

LC  dynamics  prediction  after  some  years  of  plan  for  the  implementation  of  forestry

development strategy in Phu Yen Province, N  126/KH-UBND 13/7/2021; and Decision

on the approval  of the project for planting 15 million trees in Phu Yen Province for the

period 2021-2025, N  1646/QĐ-UBND 16/11/2021. The results of the assessments were

used  to  map  PEF  and  EEF  zoning.  This  approach  not  only  advances  current

methodologies,  but  also  provides  a  robust  framework  for  effective  LC  management,

benefitting  stakeholders  involved  in  land  conservation  and  resource  allocation.  The

insights gained from this study will  be instrumental  in guiding policy development and

strategic planning, ultimately contributing to sustainable land-use practices.

Material and methods

Study area

The Hinh River Basin is in a mountainous district in the southwest of Phu Yen Province of

Vietnam. It features extensive land, majestic mountains and numerous stunning natural

o

o
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landscapes. The land is home to more than 20 ethnic groups occupying nearly half of the

total population sharing the territory with the Kinh ethnicity (the majority ethnic group in

Vietnam). Hinh  River Basin has a  diverse  range  of land  covers (LC), including  forest

landscapes, agroforestry and  waterbodies. Hinh  River is a  primary tributary of the  Ba

River, flowing through the Hinh River Basin in Phu Yen Province (Fig. 1).

The landscpae map

Landsat Image Collection

The images used in this study are surface reflectance images from Landsat 5-TM and 8-

OLI satellites, with a spatial resolution of 30 m, creating a rich and reliable database for

monitoring  and  studying  environmental  and  geographical  phenomena. Table  1 details

the images used. The image classification process was conducted for four periods: 2010,

2015, 2018 and 2023, using separate scripts and datasets for each year.

Image Pre-processing

An open-source cloud computing platform was implemented to perform image collection,

supervised  classification  and accuracy assessment by applying  machine-learning  and

artificial  intelligence  algorithms (Tamiminia  et al. 2020). The  cloud  computing  system

provides  a  flexible  and  powerful  environment  for  processing  and  analysing  large

datasets from Landsat. Machine-learning algorithms are applied to improve the accuracy

of image classification, ensuring that the results accurately reflect changes on the Earth's

surface. Specifically, using open-source technology not only helps reduce costs, but also

allows the scientific community to access, verify and improve the methods and algorithms

used. We performed image pre-processing by applying a cloud mask to each dataset to

create composite images with acceptable cloud-cover levels. This cloud filtering process

uses the  "pixel  qa" band  in  the  surface  reflectance  collections to  remove  clouds and

cloud shadows, resulting in cloud-free RGB composites (Markert et al. 2018). To further

analyse the study area, we used the boundary of Song Hinh District to clip the images,

retaining only the portion within this area. This guarantees that the processed image data

only focuses on  the  Song Hinh  District and  is unaffected  by factors outside  the  study

region.

LC Training, Classification and Accuracy Evaluation

The Landsat 5 and 8 images of the years; 2010, 2015, 2018 and 2023 were processed

from the Google Earth archive by coding in JavaScript in the GEE platform. As the images

are provided at level 2 by the provider, no atmospheric and geometric corrections were

required for further processes. The remote sensing scenes were clipped for the region of

interest  (ROI)  and  filled  for  the  images  with  a  cloud  percentage  of  less  than  30%.

Representative  samples  for  LC  classes  such  as  annual  industrial  crop,  forest  and

plantation forests, scattered trees, rice, crop/shrub/grass, urban/built-up and water were

selected based on the  maps of: (i)  the  2010 land-use map (provided by the  Phu Yen
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People's  Committee, scale  1:100,000); and (ii)  a  field  survey. A  total  number  of 978

training points were sampled. The collected points were photographed, described and

geotagged.  We  used  the  Random Forest  classification  algorithm (Zhao  et  al.  2024),

utilising 70% of the points to train the model and 30% to evaluate accuracy. The model's

accuracy  was  evaluated  using  metrics, such  as  AUC  (Huang  J  and  Ling  2005)  and

Kappa  (Cohen  1960).  The  model  results  were  further  processed  in  QGIS  3.22.1  to

classify  into  LC  maps  for  four  different  periods.  Finally,  an  LC  change  graph  was

calculated  for  the  period  from  2010-2023  and  projected  to  2030  using  the  Markov

algorithm.

Environmental Sensitivity Zoning

Selection Evaluation Criteria

The  study  identified  Environmental  Sensitivity  Zoning  (PEF)  using  methods

recommended  by França  et al. (2022). The  PEF map  was built using five factors  (F1-

F5). Table 2 shows information of the factors used to create these maps. Elevation (DEM)

downloaded  from Worldclim 2.0  to  interpolate  slope  factor  (F1)  using  Spatial  Analyst

Tools in  ArcGIS 10.8; Annual  mean precipitation (F2) downloaded from Worldclim 2.0;

Fluvial hierarchy (F3) extracted from DEM data and analysed using the Strahler method;

Percentage of sand in soil  at 5 cm depth (F4) downloaded from the SoilGrid database;

Geological  domains (F5) were used from the data  of Vietnam Institute  of Geosciences

and Mineral Resources.

The EEF map was constructed using six factors (F1-F6). F6 is the landscape (LC) type

that was  obtained from the  result  of  this  study. A  group  of six  experts  was  invited  to

participate in  a focus group discussion (FGD) to assign weight scores to each factor (

Hennink 2013, Yulianti  and  Sulistyawati  2021). The  weights were  on  a  scale  of 9  (9:

extremely high; 7: high; 5: medium; 3: rather low and 1: low) to determine the level of EF

related to the resilience of each sub-factor (Table 2). Each map was ranked according to

sub-factors to facilitate expert evaluation by QGIS version 3.22.1 (Fig. 2).

Each sub-factor was scored from low to high (Fig. 2, Table 2) as follows:

• F1: Slope: 0-6%, 6-12%, 12-20%, 20-30%, above 30%.

• F2:  Annual  mean  precipitation:  1,250–1,300  mm/year,  1,300–1,350  mm/year,

1,350–1,400  mm/year,  1,400–1,450  mm/year,  1,450–1,500  mm/year,  1,500–

1,678 mm/year.

• F3: Fluvial hierarchy: from 1  order to 7  order.

• F4: Percentage of sand in soil: < 15%, 15-20%, 20-25%, 25-35%, > 35%.

• F5:  Geological  domains: Archean  Gneisses  and  Migmatites, Cenozoic  Detrital

Lateritic  Covers,  Deformed  Granitoids,  Metasedimentary  Rocks,  Paragneisses

Complex, River and Lake, Sedimentary Rocks, Undeformed Granitoids.

• F6: LC types: annual industrial crop, urban/built-up, water, crop/shrub/grass, rice,

scattered trees, forest (natural and plantation forest).

st th
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Analytic Hierarchy Process (AHP) 

We used the AHP method for multi-criteria decision-making and pairwise comparison of

components,  based  on  a  scale  (Saaty  2008).  This  scale  ranges  from  1  (equal

importance) to  9  (extreme importance  of one  criterion  over another). We checked  the

consistency ratio of the AHP evaluation by calculating the consistency index CI (Equation

(1)), where CI = consistency index; n = number of criteria evaluated; λ  = eigenvector.

The average of the eigenvector was then calculated.

                                                                                         (1)

The consistency ratio (CR) is the ratio of the consistency index (CI) to the random index

(RI) as determined by Equation (2). RI is a fixed value that depends on the matrix size:

the number of criteria evaluated (n); the matrix is considered consistent if CR ≤ 0.1.

                                                                                                       (2)

The  data  collected  consists  of  pairwise  comparisons  of  all  factors  in  the  proposed

hierarchical model. Six experts were invited to participate in the FGD meeting, where they

were asked to complete a survey on the importance of the six criteria listed in Table 2.

Multi-Criteria Analysis

Each  criterion  was  classified  into  different  classes  and  each  class  was  assigned  a

suitable score, based on the experts' opinions (Dean 2020). Finally, the maps (PEF and

EEF) were created by establishing AHP weights and performing multi-criteria  analysis

(MCA) by considering weighted overlaps for the criteria  (Ruiz et al. 2020). The output

diagram for PEF with five identified fragility criteria is defined by Equation (3).

                                                                                        

  (3)

S = PEF value; wi = weight of the factor for the i-th criterion obtained through the AHP

method; xi = normalised or standardised value of the cell for the i-th criterion. We used

the Jenks method to reclassify the output map, identifying natural breaks in the datasets

by grouping similar values.

Results and Discussion

Landscape Dynamic from 2010 to 2023

The four land-cover maps for the years 2010, 2015, 2018 and 2023 were produced by

using  the  Random  Forest  (RF)  algorithm  to  classify  Landsat  images  from  the

corresponding  years (Fig. 3). The  accuracy assessment results showed a  mean AUC

Max
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value of 0.85 and a Kappa value of 0.8. The results indicate the area of 07 LC types

(Annual industrial  crop; Urban/built-up; Water; Crop/Shrub/Grass; Rice; Scattered trees;

Forest (natural and plantation forests) over the years 2010, 2015, 2018 and 2023. The

results in Fig. 3 showed that the area of forest and plantation forests and annual industrial

crops are the two types of LC that increased in area from 2010 to 2023. Meanwhile, the

other LC types (urban/built-up; water, crop/shrub/grass; rice) all decreased in area (Fig. 4

). These results indicated a significant change and effectiveness in forest management

policies, with an increase in forest area; in contrast, the bare land gradually decreased

and the relevance of the RF approach for the accurate classification and analysis of land-

cover changes over time, providing valuable insights into environmental  and land-use

dynamics over more than two decades.

Landscape Prediction for 2030

Overall, there are changes in landscape, with an increasing trend in forest and annual

industrial crops, while the area of scrattered trees and urban and other types of cultivation

gradually  decreases.  The  forest  area  (both  natural  and  plantation)  has  significantly

increased from around 25,000 ha in 2010 to nearly 40,000 ha in 2030. This is a positive

trend  for  the  environment  and  ecosystems.  The  area  of  annual  industrial  crops  has

slightly risen from around 15,000 ha in 2010 to below 20,000 ha in 2030. The urban and

built-up area has decreased from around 8,000 ha in 2010 to nearly 7,000 ha in 2030.

The  area  of rice  cultivation  has  remained  quite  stable, fluctuating  around  10,000  ha

throughout this  period  from 2010  to  present (2023). The  area  of scattered  trees  has

remained almost unchanged, staying stable at around 5,000 ha. The water area has also

remained stable, with slight changes throughout this period. The area of crops, shrubs

and grass has significantly decreased from around 26,000 ha in 2010 to 23,000 ha in

2023 and predicted below 20,000 in 2030. (Fig. 4).

The Markov method demonstrates robust analytical capabilities for predicting changes in

land-use types up to 2030 by analysing probabilistic transition models from one state to

another  (Floreano  and  de  Moraes  2021).  From  these  analysis  results,  we  observe

significant changes in Forest and plantation forests and Scattered trees; while forests are

expanding significantly, Scattered trees are declining. These areas not only hold crucial

ecological  value, but also  harbour substantial  potential  for developing  pure  plantation

forestry activities, enriching forests in the future. Protecting and restoring Scattered Tree

areas not only contributes to environmental  conservation, but also opens opportunities

for integrated agroforestry projects to enhance LC sustainability (Vo and Hoang 2014).

Forest resource  management has not been  improving  in  many parts of Vietnam. The

study,  utilising  census  and  geographic  data  from  1990,  has  clarified  the  distinction

between natural forest regeneration and the increase in plantation forests and has found

that policies allocating  forest land, the  scarcity of forest products and  the  demand for

timber in remote areas have driven the increase in forest area. However, not all areas in

Vietnam that are reforested receive equal attention. This means that, while reforestation

efforts  are  taking  place, some  regions  may not be  given  the  same  level  of focus  or
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resources (Meyfroidt and Lambin 2008). Thien and Phuong (2024) studied LC changes

over  20  years  in  Ba  Ria  Vung  Tau  Province  (Vietnam) using  Landsat  imagery,

Normalised Difference Vegetation Index (NDVI) and Normalised Difference Water Index

(NDWI), revealing  a  decline  in  forest area  during  this period. Different regions exhibit

varying  increases  and  decreases  in  forest  and  other  LC  types,  which  can  serve  as

indicators for land-use management (Gupta and Sharma 2020). The integrated approach

of  LC  modelling  and  remote  sensing  (multi-year  phases)  helps  in  assessment  and

analysis, providing a reliable method to recommend solutions to mitigate human-induced

disruptions (Piao et al. 2021, Hishe et al. 2021, Delgado-Artés et al. 2022). Results from

GEE  can  be  developed  into  applications  for  free  sharing  amongst  researchers,

managers, ecologists, facilitating ongoing research, improving processes and monitoring

LC changes (Hird et al. 2021).

PEF Map

The score of each factor and sub-factor in  the AHP model  was prioritised. The results

from the FGD process helped identify the types of important sub-factors (Table 3). Results

showed the LC is the most influential factor on PEF,  with a weight of 40%, followed by

slope  (27.5%), precipitation  (14%); fluvial  hierarchy (11%); percentage  of sand  in  soil

(4.5%) and geological type (3%). The consistency index (CI) and consistency ratio (CR)

were < 0.10. The MCA evaluation process resulted in the PEF Map, dividing the area into

five different zoning of EF (Fig. 5). Generally, areas with low PEF are distributed in the

northeast or southwest parts of the study area, characterised by extensive natural  and

plantation forests. Areas with very high PEF are located in the northwest or around large

reservoirs. Specifically, dark-green-coded areas indicate environments with low fragility

and high resilience to external impacts (covering approximately 19% of the total  area).

These are typically stable areas less affected by human or natural activities. Light-green-

coded areas indicate moderately fragile environments (covering approximately 20% of

the  total  area).  These  areas  still  exhibit  good  resilience,  but  are  beginning  to  show

susceptibility  to  damaging  factors.  Yellow-coded  areas  represent  moderately  fragile

environments (covering approximately 27% of the total  area). The environment here is

less prone to  damage from human and natural  impacts. Orange-coded areas indicate

highly  fragile  environments  (covering  approximately  17.7%  of  the  total  area).

Environments in  these areas are very susceptible to damage from human and natural

impacts.  Red-coded  areas  represent  extremely  high fragility  (covering  approximately

16.3% of the total area). These are the most sensitive areas, highly susceptible to severe

damage  from human  and  natural  impacts. Priority  should  be  given  to  protection  and

management measures to safeguard these areas.

EEF Map

The EEF was generated through integrated PEF and LC using the AHP-MCA analysis,

offering a comprehensive view of the environmental  impacts of human activities in the

region (Fig. 6). Areas categorised as requiring extremely high protection (Extremely high

EEF)  are  predominantly  characterised  by  low-lying  terrain,  extensive  river  networks,
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lakes and  scattered  trees that have  not yet matured  into  forests, covering  26% of the

territorial  area. Areas necessitating high protection (High EEF) are primarily located in

high  mountainous  regions  with  extensive  natural  forests  and  well-established

plantations,  encompassing  29%  of  the  territorial  area,  predominantly  situated  in  the

southern and eastern parts of the study area. Areas requiring moderate to low protection

(Medium and Slightly low EEF) are associated with medium and low mountainous areas,

featuring  numerous small  farms and annual  industrial  crop  trees. These areas exhibit

relatively  stable  environmental  conditions and, thus, require  less intensive  protection.

Areas classified  as requiring  low  protection  (Low  EEF) are  mainly  found  in  low-lying

areas with extensive rice paddies and flower fields.

The EEF map indicated the high sensitivity areas to EF,  with Water LC (WT) being the

most sensitive, followed by Annual  industrial  crop  (AIC), Forest (FST), Scattered  trees

(SCT); Rice  (RC), Crop/Shrub/Grass (CR)  and  Urban/Built-up  (UB) (Fig. 7). Water  LC

often depends on multiple environmental factors to maintain ecological balance (França

et al. 2022). Factors such as water quality, pollution levels and changes in these factors

can  significantly impact the  ecological  health  and  development of aquatic LCs. Water

pollution, agricultural  practices and industrial  activities can degrade water quality, alter

flow regimes and affect species distribution within aquatic LCs, leading to a decline in

their quality (Gayathri et al. 2021). Aquatic areas are typically sensitive and vulnerable to

changes  from  the  surrounding  environment,  especially  when  fragmented  or  under

pressure from human activities (Jumani et al. 2020). Small fragmented aquatic areas or

those not connected to each other may become less sustainable and more vulnerable to

external  threats.  Plant  and  animal  species  within  aquatic  environments  are  often

sensitive to changes in their habitats (Mayeda and Boyd 2020). When environments are

disrupted, these species may struggle to adapt or migrate to other areas, increasing the

risk of extinction or population decline. These factors make Water LC more sensitive and

prone to damage from environmental changes and human activities, resulting in a high

EF index. The evaluation results accurately reflect that areas with high PEF indices are

primarily  Water  LC. This  recommendation  could  assist  local  authorities  in  enhancing

solutions to protect river, lake, irrigation and canal ecosystems, optimising land resource

use and improving the economic efficiency of local  agriculture and forestry production.

Forecasting changes in aquatic, forest and agricultural LC using a Markov-CA model in

GEE cloud technology has proven highly useful in guiding the early detection of urban

development trends linked with environmental protection.

Conclusions

Assessing LC dynamics in the Hinh River Basin, a tributary of the lower Ba River flowing

through  Phu  Yen  Province, Vietnam from 2010  to  2023  using  a  Markov-CA model  in

Google  Earth  Engine,  also  helps  to  forecast  the  landscape  change  trends  from  the

present to 2030. The results of this study provide a potential environmental function (PEF)

map and an emerging environmental vulnerability (EEF) map, all of which highlight areas

that need to  be protected in  the  future. Aquatic ecosystems (water LC) need the most
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protection amongst the types in the study area, followed by annual  industrial  crop LC,

natural  forest LC and plantation forests LC that need to be protected due to high EEF

index occupy the  majority  of the  area  in  the  study area. Of these, the  forest area  is

forecast to  increase significantly from about 25,000 ha in  2010 to nearly 40,000 ha in

2030. This new finding has further clarified the positive trend in local  forest restoration

management  and  suggested  the  need  to  enhance  the  protection  of  highly  sensitive

surface water LC.
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Figure 1. 

Hinh River Basin, Phu Yen Province, Vietnam. The map of the study area in Vietnam (a); the

map of Phu Yen Province (b); The map of Hinh River Basin, Song Hinh district (c). Landscape

types: rice (d),  crop (e),  scattered trees (f),  water  (g),  annual industrial crop (h),  natural

forest (i), urban/built-up (j), plantation forest (k).
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Figure 2. 

The factors used for  the evaluation of potential environmental fragility (PEF) and Emergent

Environmental Changes (EEC) of Song Hinh. Terrain slope (A); Geological domains (B); River

hierarchy (C); Percentage of Sand in soil (D); Annual mean precipitations (E); Land use-land

cover (F).
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Figure 3. 

Map of LC from 2010 to 2023.
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Figure 4. 

LC dynamics over from 2010 to 2023 and prediction for 2030.
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Figure 5. 

Map of potential environmental fragility (PEF).
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Figure 6. 

Zoning of Emergent Environmental Fragility (EEF).
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Figure 7. 

The percentage of LC in total area of extremely high EEF. UB: urban/built-up LC; CR: Crop/

shrub/grass  LC;  RC:  Rice  LC;  SCT:  Scattered  tree  LC;  FST:  Forest  LC  (natural  and

plantation forests); AIC: annual industrial crop LC; WT: water LC.
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Period Name of Satellite images Acquisition time 

2010 Landsat 5-TM 3,4,5 01-01-2010, 12-31-2010

2015 Landsat 8-OLI 4,5,6 01-01-2015, 12-31-2015

2018 Landsat 8-OLI 4,5,6 01-01-2018, 12-31-2018

2023 Landsat 8-OLI 4,5,6 01-01-2023, 12-31-2023

Table 1. 

Satellite imagery information used.
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 Factors Data type, resolution Database, method 

F1 Slope Raster, 30 m Worldclim

F2 Annual mean precipitation Raster, 250 m Worldclim

F3 Fluvial Hierachy Raster, 250 m Strahler method

F4 Percentage of sand in soil Raster, 250 m Soilgrids,

F5 Geological Domains Polygons Atlanta Vietnam

F6 Landscape (LC) Raster, 250 m From this study

 

Table 2. 

The factors used for mapping the PEF and EEF.
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N Factors Sub-factors Scores Weight

(%)

F1 Slope 0-6% 1 27.5

6-12% 3

12-20% 5

20-30% 7

above 30% 9

F2 Annual mean precipitation 1,250-1,350 mm/year 3 14

1,300-1,350 mm/year 3

1,350-1,400 mm/year 3

1,400-1,450 mm/year 7

1,450-1,678 mm/year 7

F3 Fluvial hierachy 5-7  order 1 11

- 3

3-4  order 5

2 order 7

1 order 9

F4 Percentage of sand in soil at 5

cm depth

<15% 1 4.5

15-20% 3

20-25% 5

25-35% 7

>35% 9

F5 Geological Domains Undeformed Granitoids, Deformed Granitoids 1 3

Archean Gneisses và Migmatite 3

Metasedimentary Rocks, Paragneisses Complex,

River and Lake

5

Sedimentary Rocks 7

Cenozoic Detrital Lateritic Covers 9

F6 LC Natural forest; Forest plantations; 1 40

Annual industrial crop; crops/ shrubs/grass 3

Water 5

Rice 7

Urban/Built-up; other non-vegetated areas 9

0

th

th

th 

th 

Table 3. 

Expert scores for EF evaluation factors.
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