Mycena brunnescens (Basidiomycota, Mycenaceae), a new species of Mycena sect. Pterigenae from China

Hong Zhang[‡], Ying Xin Xiao[‡], Zhu Ming Tan[§], Ai Rong Shen[§], Bao Ming Shen[§], Yun Tan[§], Sai Nan Li[§], Li Guo Feng^I, Zhu Xiang Liu[‡], Li Na Liu[§]

College of Biology and Environmental Sciences, Jishou University, Jishou 416000, China
Hunan Academy of Forestry, Changsha 410004, China
Hunan Edible Fungi Research Institute, Changsha 410004, China

Corresponding author: Zhu Xiang Liu (liuzhuxiang@126.com), Li Na Liu (omphalina@outlook.com)

Academic editor: Yupeng Ge

Abstract

Background

Mycena (Pers.) Roussel (1806) is a large genus of Mycenaceae known for having small to medium-sized basidiomata. It is typified by the species *Mycena galericulata* (Scop.) Gray. For years, many mycologists have made important contributions to understanding *Mycena* and several monographs have been published. Three specimens were collected from China that belonged to the genus *Mycena*. On the basis of morphological analysis and phylogenetic analyses employing DNA sequences, a new species is described.

New information

Mycena brunnescens sp. nov. is described as a new species from subtropical areas of China. It is characterised by its brown pileus, whitish lamellae that turns brown when bruised, orange to brown lamellae edges, the absence of pleurocystidia and cheilocystidia with simple or branched excrescences at the apex containing yellowish-brown contents. We performed phylogenetic analyses on a concatenated dataset comprising the internal transcribed spacer and large subunit regions of nuclear ribosomal RNA using Bayesian Inference and Maximum Likelihood methods. The result showed that the new taxon clustered in an independent group and is closely related to *M. albiceps* and *M. flosoides*.

Keywords

new taxon, molecular phylogeny, taxonomy

Introduction

Mycena (Pers.) Roussel (Roussel 1806) (Mycenaceae, Agaricales) is a large genus composed of at least 500 species worldwide (Kirk et al. 2008). *Mycena* species are known for their small to medium-sized basidiomata. Some *Mycena* species were reported to be bioluminescent, emitting light through their basidiomata, hyphae or both (Chew et al. 2014, Chew et al. 2015, Cooper et al. 2018, Cortés-Pérez et al. 2019, Desjardin et al. 2007, Desjardin et al. 2010). Additionally, *Mycena* can play a vital role in ecology by participating in the decomposition process of organic matter; moreover, some serve as the germination fungi for *Gastrodia elata* seeds (Frankland 1998, Liu et al. 2022b).

China has abundant *Mycena* resources and many new *Mycena* species have been recorded to date (Ge et al. 2021, Liu et al. 2021, Liu et al. 2022, Na and Bau 2018, Na and Bau 2019a, Na and Bau 2019b, Na et al. 2022, Qiang and Bai 2023, Wei et al. 2024). During our field investigations of mycenoid fungi in China, we discovered a new species. Detailed morphological features and phylogenetic analysis, based on the ITS and LSU sequences, indicate that the new taxon is distinct from morphologically similar and phylogenetically related species.

Based on the morphological classification proposed by Maas Geesteranus (Maas Geesteranus 1992), this new taxon belongs to sect. *Pterigenae*. Section *Pterigenae* was initially classified into the subsect. *Pterigenae* of sect. *Luculentae*. Maas Geesteranus later discovered the only species of the subsect. *Pterigenae, M. pterigena,* lacks pleurocystidia, which is different from other species in sect. Luculentae. Therefore, Mass Geesteranus elevated it to section rank (Robich 2016). *Mycena* sect. *Pterigenae* (Maas G.) Maas G. is characterised by an orange-red to pink pileus and lamellae edges, cheilocystidia typically covered with cylindrical excressences containing coloured contents, absence of pleurocystidia, hyphae of the pileipellis and stipitipellis densely ornamented with warts (Maas Geesteranus 1986). It currently comprises two taxa, *Mycena pterigena* (Fr.) P. Kumm. and *Mycena capillofasciculata* Robich.

Materials and methods

Sampling, morphological observations and descriptions

Specimens in this study were collected from Guangxi Zhuang Autonomous Region and Sichuan Province, dried with silica gel and deposited in the Herbarium of Jishou University (JIU). Macroscopic characters were described by field observations and digital images, with colour terms following Kornerup and Wanscher (1978). Microscopic

characters were observed on dried specimens under light microscopy (Olympus BX51) and specimens were mounted in pure water and 5% potassium hydroxide (KOH) or 1% Congo red. Melzer's reagent was used to test the amyloidity of basidiospores and dextrinoid reaction of tissues. Thirty spores were measured per basidioma with Q being the ratio of basidiospore length to its width in side view. Other microscopic features required at least 20 measurements from each specimen.

DNA extraction, PCR amplification and sequencing

Total genomic DNA was extracted using the NuClean Plant Genomic DNA kit (CWBIO, Norcross, GA) according to the manufacturer's instructions. The internal transcribed spacer (ITS) and 28S large subunit regions of ribosomal DNA were amplified with the primer pairs ITS5/ITS4 and LR0R/LR7 (White et al. 1990). PCR conditions for ITS and LSU followed (Zhang et al. 2019) and the amplified PCR products were purified and sequenced by Sangon Biotech (Shanghai, China) for purification and sequencing.

Data analyses

For molecular phylogenetic analyses of the combined dataset (ITS+LSU), the sequences were aligned using MAFFT v.7.310 (Katoh and Standley 2013) and manually edited using BioEdit v.7.0.5 (Hall 1999). In the alignment, gaps were treated as missing data. MrModelTest v.2.3 was used to determine the best fit model, based on the Akaike Information Criterion (Nylander 2004). Maximum Likelihood (ML) analysis was performed using RAxML-NG v.0.9.0 with 1000 bootstrap replicates (Kozlov et al. 2019) and Bayesian Inference (BI) analysis was performed using MrBayes 3.2.6 (Ronquist and Huelsenbeck 2003). The analysis ran for 1,0000,000 MCMC generations with four chains, sampling every 1,000 generations, the initial 25% of sampled data being discarded as burn-in. Phylogenetic trees were visualised with FigTree v.1.4.3. The outgroup selected was from Liu et al. (2022a).

Taxon treatment

Mycena brunnescens L.N. Liu, sp. nov.

• MycoBank <u>851945</u>

Materials

Holotype:

 kingdom: Fungi; phylum: Basidiomycota; class: Agaricomycetes; order: Agaricales; family: Mycenaceae; taxonRank: species; genus: *Mycena*; country: China; stateProvince: Guangxi; county: Leye; verbatimLocality: Yachang Orchid National Nature Reserve; verbatimLatitude: 24°29'04.62" N; verbatimLongitude: 106°22'35.40" E; eventDate: 30 June 2021; identifiedBy: Ying Xin Xiao; institutionID: JIU; collectionID: JIU125; occurrenceID: 2723CE40-21C3-5048-93D7-89379C9BF8F0

Paratypes:

- a. kingdom: Fungi; phylum: Basidiomycota; class: Agaricomycetes; order: Agaricales; family: Mycenaceae; taxonRank: species; genus: *Mycena*; country: China; stateProvince: Guangxi Zhuang Autonomous Region and Sichuan Province; county: Leye; verbatimLocality: Yachang Orchid National Nature Reserve; verbatimLatitude: 27°23'40" N; verbatimLongitude: 106°11'35" E; eventDate: 30 June 2021; identifiedBy: Ying Xin Xiao; institutionID: JIU; collectionID: JIU126; occurrenceID: 10688CAA-8D2B-56EE-86AD-CF320C05CC3E
- kingdom: Fungi; phylum: Basidiomycota; class: Agaricomycetes; order: Agaricales; family: Mycenaceae; taxonRank: species; genus: *Mycena*; country: China; stateProvince: Sichuan province; eventDate: 30 September 2023; identifiedBy: Ying Xin Xiao; institutionID: JIU; collectionID: JIU127; occurrenceID: 611F3C05-18F0-5409-A51F-6496001496C9

Description

Pileus 3–8 mm diam., hemispherical, plane-convex to nearly applanate, umbonate to deppresed to almost subumbilicate, first translucent-striate, then sulcate, glabrous, light orange (6A5) to orange (6B7) when young, becoming yellowish-brown (6F6) or dark brownish-grey (6F8) in the disc and in the grooves with age, margin concolorous or paler, pale yellowish-brown (5D8) to brown (6D7) or dark brown (6F4–6F8). Context thin, fragile, whitish. Lamellae decurrent, moderately distant (L = 15–20, I = 1–2), changing from whitish (1A1) to dark brown (6F7–6F8) when bruised, lamellae edges light orange to orange (6A5-6B7), light brown (6D4–6D8) to brown (6E8). Stipe 17–34 × 1–2 mm, cylindrical, hollow, surface smooth, yellowish-brown (6F6–6F8) in age, the upper portion brownish-orange (6C6), light brown (6D4–6D8) or brown (6E4–6E8), equal and with a slightly bulbous base, covered with whitish fibrils (Fig. 1). Odour and taste not distinctive.

Basidiospores 5.9–7.3 (7.5) × (3.1) 3.2–3.8 μ m, Q = 1.6–2.2, ellipsoid to oblong, few subcylindrical, smooth, hyaline, amyloid, thin-walled. Basidia 14–23 × 5–10 μ m, short clavate or clavate, 4–spored, thin walled. Cheilocystidia 20–42 × 6–12 μ m, clavate or cylindrical, with branches excrescences at the apex, 3–10 × 1–3 μ m, with yellowishbrown (5D8) contents. Pleurocystidia absent. Pileipellis a cutis, hyphae of the pileipellis 1.6–4 μ m wide, hyaline, densely covered with cylindrical excrescences 1–4 × 1–2 μ m. Hyphae of the stipitipellis 1–7 μ m wide, with cylindrical excrescences 1–4 × 1–2 μ m, hyaline, thin-walled. Clamps present in all tissues (Fig. 2).

Diagnosis

Mycena brunnescens has a brown pileus, lamellae that change from whitish to brown when bruised, orange to brown lamellae edges, basidiospores ellipsoid to oblong, cheilocystidia clavate with yellowish-brown contents, pileipellis and stipitipellis covered with cylindrical excrescences. Differs from *M. strobilinoidea* by branched cheilocystidia and absent pleurocystidia.

Etymology

Referring to the colour of basidiomata.

Distribution

Only known from Guangxi Zhuang Autonomous Region and Sichuan Province.

Ecology

Scattered or gregarious on decayed leaves.

Analysis

Phylogenetic analyses

A total of 94 sequences (ITS and LSU) were used for phylogenetic reconstruction, including five sequences generated in this study and 89 sequences retrieved from GenBank. Sequences selection was mainly based on similar morphological characteristics, a BLAST result and previous research (Table 1). Based on the optimal evolutionary model selected for ITS and LSU sequences GTR+I+G, ML and BI trees shared similar topology. Thus only the BI tree is presented (Fig. 3).

The phylogenetic tree contained two major clades. The new species was placed in Clade 1. *Mycena pterigena*, which belongs to the same section, was also placed in Clade 1, but showed a distant relationship with the new species. The new taxon from China formed a monophyletic lineage (ML/PP = 98/1.00) and grouped with *M. flosoides* L. N. Liu and *M. albiceps* (Peck) Gilliam forming a small branch with high statistical support value (ML/PP = 98/1.00). Therefore, the new taxon can be clearly separated from *M. flosoides* and *M. albiceps* (Fig. 3).

Discussion

Mycena brunnescens is characterised by its brown pileus, decurrent lamellae, whitish lamellae that change to brown when bruised, lamellae edges orange to brown, a smooth stipe with a slightly enlarged base, cheilocystidia clavate, covered with simple to branched, cylindrical excrescences, and containing yellowish-brown contents, pileipellis and stipitipellis covered with simple and scattered excrescences. It belongs to sect. *Pterigena*, based on its brightly coloured basidiomata and lamellae edges, cheilocystidia with long excrescences and absence of pleurocystidia, hyphae of pileipellis and stipitipellis with excrescences (Maas Geesteranus 1986, Robich 2016). Two species, *M. capillofasciculata* and *M. pterigena* are currently in this section. It is worth mentioning that *M. pterigena* has been reported in China (Wang 2013). However, *M. pterigena* can be easily distinguished from *M. brunnescens* by its pink pileus and stipe, pink lamellae

edges, typically occurring on decaying fern stalks and longer basidiospores, longer and unbranched cylindrical excrescences on the apex of the cheilocystidia and pileipellis with terminal cells similar to cheilocystidia (Maas Geesteranus 1986, Robich 2003, Robich 2016, Uzun and Demirel 2017). Mycena capillofasciculata was originally described from Italy by Robich. It differs by its light pink and pale brownish-pink pileus, deep rose lamellae edges, smooth cheilocystidia or few excrescences, stipe with long fibrils, united in bundles and broader basidiospores (Robich 2016). Mycena sect. Pterigena was initially assigned to subsect. Pterigenae of sect. Luculentae by Maas Geesteranus, with three species belonging to sect. Luculentae: M. aurantiomarginata (Fr.) Quél., M. rosella (Fr.) P. Kumm. and M. strobilinoidea Peck. Amongst them, M. strobilinoidea resembles the new species, but it can differ in its orange-yellow lamellae, reddish-orange lamellar edges and the presence of pleurocystidia (Maas Geesteranus 1980, Na and Bau 2018, Perry 2002). Mycena brunnescens cannot be mistaken for the other species of sect. Luculentae because its lamellae gradually change from whitish to brown when bruised. In our phylogenetic analysis, ML and BI trees, based on ITS and LSU sequences, show that the three specimens of the new species were palced in a small branch of Clade 1. Mycena pterigena of the same section clustered in a different branch within Clade 1 and was sister to *M. flavescens* Velen., Additionally, it can be clearly distinguished from this new taxon. Mycena flosoides and M. albiceps were located in the same small branch with the new taxon. Mycena flosoides differs by its pink pileus and lamellae, shorter basidia, cheilocystidia without coloured contents, pileipellis with terminal cells up to $42 \times 16 \,\mu\text{m}$ and the presence of brown rhizomorphs (Liu et al. 2022a). In comparision, *M. albiceps* has a white pileus, black stipes with brown mycelium and longer stipes (Gilliam 1976, Liu et al. 2022a). Furthermore, the three species in the same small branch share some common characteristics, including the same basidiospore shapes and decurrent lamellae.

Acknowledgements

This study was supported by the Hunan Natural Science Foundation (2023JJ50073). We would like to give our appreciation to Ms Xian Mei Yang and Ms Chang Zhuo Liu for providing the specimens in this study. We thank Mallory Eckstut, PhD, from Liwen Bianji (Edanz) (www.liwenbianji.cn) for editing the English text of a draft of this manuscript.

References

- Chew ALC, Tan YS, Desjardin DE, Musa MY, Sabaratnam V (2014) Four new bioluminescent taxa of *Mycena* sect. *Calodontes* from Peninsular Malaysia. Mycologia 106 (5): 976-988. <u>https://doi.org/10.3852/13-274</u>
- Chew ALC, Desjardin DE, Tan YS, Musa MY, Sabaratnam V (2015) Bioluminescent fungi from Peninsular Malaysia a taxonomic and phylogenetic overview. Fungal Diversity 70 (1): 149-187. <u>https://doi.org/10.1007/s13225-014-0302-9</u>

- Cooper AC, Desjardin DE, Perry BA (2018) The genus *Mycena* (Basidiomycota, Agaricales, Mycenaceae) and allied genera from Republic of São Tomé and Príncipe, West Africa. Phytotaxa 383 (1): 1-47. <u>https://doi.org/10.11646/phytotaxa.383.1.1</u>
- Cortés-Pérez A, Desjardin DE, Perry BA, Ramírez-Cruz V, Ramírez-Guillén F, Villalobos-Arámbula AR, Rockefeller A (2019) New species and records of bioluminescent *Mycena* from Mexico. Mycologia 111 (2): 319-338. <u>https://doi.org/ 10.1080/00275514.2018.1554172</u>
- Desjardin DE, Capelari M, Stevani C (2007) Bioluminescent *Mycena* species from São Paulo, Brazil. Mycologia 99 (2): 317-331. <u>https://doi.org/</u> 10.1080/15572536.2007.11832592
- Desjardin DE, Perry BA, Lodge DJ, Stevani CV, Nagasawa E (2010) Luminescent *Mycena*: new and noteworthy species. Mycologia 102 (2): 459-477. <u>https://doi.org/</u> <u>10.3852/09-197</u>
- Frankland JC (1998) Fungal succession—unravelling the unpredictable. Mycological Research 102 (1): 1-15. <u>https://doi.org/10.1017/S0953756297005364</u>
- Ge YP, Liu ZW, Zeng H, Cheng XH, Na Q (2021) Updated description of *Atheniella* (*Mycenaceae*, *Agaricales*), including three new species with brightly coloured pilei from Yunnan Province, southwest China. MycoKeys 81: 39. <u>https://doi.org/10.3897/mycokeys.</u> 81.67773
- Gilliam MS (1976) The genus *Marasmius* in the northeastern United States and adjacent Canada. Mycotaxon 4 (1): 1-144.
- Hall TA (1999) BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41 (41): 95-98. <u>https:// doi.org/10.1021/bk-1999-0734.ch008</u>
- Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Molecular Biology and Evolution 30: 772-780. <u>https://doi.org/10.1093/molbev/mst010</u>
- Kirk PM, Cannon P, Stalpers J, Minter DW (2008) Dictionary of the Fungi, 10th ed. Centre for Agriculture and Bioscience International: Wallingford, UK, 771 pp.
- Kornerup A, Wanscher JH (1978) Methuen handbook of colour. Eyre Methuen, London, 252 pp.
- Kozlov AM, Darriba D, Flouri T, Morel B, Stamatakis A (2019) RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics 35 (21): 4453-4455. <u>https://doi.org/10.1093/bioinformatics/btz305</u>
- Liu LN, Zhou GY, Tan ZM, Tian YX (2022a) Two new *Mycena* (Mycenaceae, Agaricales) species with rhizomorphs from subtropical areas of China. Phytotaxa 576 (1): 75-88. https://doi.org/10.11646/phytotaxa.576.1.4
- Liu LN, Zhou GY, Shen AR, Shen BM, Tan Y, Tan ZM (2022b) Mycena subpiligera sp. nov., a symbiotic species from China associated with the seed germination of Gastrodia elata. Mycobiology 50 (5): 294-301. <u>https://doi.org/10.1080/12298093.2022.2132001</u>
- Liu ZW, Na Q, Cheng XH, Wu XM, Ge YP (2021) *Mycena yuezhuoi* sp. nov. (Mycenaceae, Agaricales), a purple species from the peninsula areas of China. Phytotax 511 (2): 148-162. <u>https://doi.org/10.11646/phytotaxa.511.2.3</u>
- Liu ZW, Ge YP, Zeng H, Cheng XH, Na Q (2022) Four new species of *Mycena* sect. *Calodontes* (*Agaricales*, *Mycenaceae*) from northeast China. <u>MycoKeys</u> 93: 23-56. <u>https://doi.org/10.3897/mycokeys.93.86580</u>

- Maas Geesteranus RA (1980) Studies in Mycenas-15, a tentative subdivision of the genus *Mycena* in the Northern Hemisphere. Persoonia 11: 93-120.
- Maas Geesteranus RA (1986) Conspectus of the Mycenas of the Northern Hemisphere-5 Sections *Luculentae*, *Pterigenae*, *Carolinenses*, and *Monticola*. Koninklijke Nederlandse Akademie van Wetenschappen, Proceedings, series C 89 (1): 83-100.
- Maas Geesteranus RA (1992) Mycenas of the Northern Hemisphere I. Studies in Mycenas and Other Papers. Koninklijke Nederlandse Akademie van Wetenschappen: Amsterdam, The Netherlands, 392 pp.
- Na Q, Bau T (2018) New species of *Mycena* (Mycenaceae, Agaricales) with colored lamellae and three new species records from China. Phytotaxa 361 (3): 266-278. <u>https:// doi.org/10.11646/phytotaxa.361.3.2</u>
- Na Q, Bau T (2019a) Recognition of *Mycena* sect. *Amparoina* sect. nov. (Mycenaceae, Agaricales), including four new species and revision of the limits of sect. *Sacchariferae*. Mycokeys 53: 103-124. <u>https://doi.org/10.3897/mycokeys.52.34647</u>
- Na Q, Bau T (2019b) *Mycena* section *Sacchariferae*: three new species with basal discs from China. Mycological Progress 18: 483-493. <u>https://doi.org/10.1007/</u> <u>s11557-018-1456-8</u>
- Na Q, Liu ZW, Zeng H, Ke B, Song ZZ, Cheng XH, Ge YP (2022) Taxonomic studies of bluish *Mycena* (Mycenaceae, Agaricales) with two new species from northern China. Mycokeys 361 (3): 119-145. <u>https://doi.org/10.3897/mycokeys.90.78880</u>
- Nylander J (2004) MrModeltest 2.3. Computer program and documentation distributed by the author. Evolutionary Biology Centre, Uppsala University, Uppsala.
- Perry BA (2002) A taxonomic investigation of *Mycena* in California. San Francisco State University, 157 pp.
- Qiang TT, Bai LC (2023) *Mycena cinereoalba* sp. nov. from Qinghai province, China. Mycotaxon 137 (4): 803-811. <u>https://doi.org/10.5248/137.803</u>
- Robich G (2003) *Mycena* d'Europa. Bresadola Mycological Association, 728 pp.
- Robich G (2016) *Mycena* d'Europa. Vol. 2. Associazione Micologica Bresadola, 796 pp.
- Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19 (1): 1572-1574. <u>https://doi.org/10.1093/bioinformatics/ btg180</u>
- Roussel HFA (1806) Flore du Calvades et des terreins adjacens. 2nd Edition, Caen, 371 pp.
- Uzun Y, Demirel K (2017) A new *Mycena* record for the Mycobiota of Turkey. Anatolian Journal of Botany 1 (1): 9-11. <u>https://doi.org/10.30616/ajb.342517</u>
- Wang RJ (2013) Research on macrofungal biodiversity in Shandong Province. Jilin Agricultural University, 158 pp.
- Wei YX, Ge YP, Qi LI, Han MG, Zeng H, Hu YP, Zou L, Cheng XH, Wu XM, Na Q (2024) Revealing Brownish *Mycena* Diversity in China: New Discoveries and Taxonomic Insights . Journal of Fungi 10 (6): 439. <u>https://doi.org/10.3390/jof10060439</u>
- White TJ, Bruns TD, Lee SB, Taylor JW, Innis MA, Gelfand DH, Sninsky J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky J, White TJ (Eds) PCR Protocols: A guide to methods and applications. Academic Press, New York, 322 pp. <u>https://doi.org/10.1016/ B978-0-12-372180-8.50042-1</u>

 Zhang M, Li TH, Wei TZ, Liang XS, Liu ZX (2019) *Ripartitella brunnea*, a new species from subtropical China. Phytotaxa 387 (3): 255-261. <u>https://doi.org/10.11646/phytotaxa.</u> <u>387.3.6</u>

Figure 1. Basidiomata of *Mycena brunnescens*. Scale bar = 5 mm. Photos by Li Na Liu.

Figure 2.

Morphological features of *Mycena brunnescens*. **a** basidiomata; **b** basidia; **c** basidiospores; **d** cheilocystidia; **e** pileipellis; **f** stipitipellis. Scale bars: a = 5 mm, b, c, d, e, f = 10 µm.

Figure 3.

Bayesian tree inferred from ITS and LSU sequences showing phylogenetic relationships of *Mycena brunnescens*. Bayesian Inference (≥ 0.90) and Maximum Likelihood support values (≥ 75) are indicated above the branches.

Table 1.

Specimens used in phylogenetic analysis and GenBank accession numbers.

Species	Voucher	GenBank Accession no.		Country
		ITS	LSU	
Atheniella adonis	H6036863	MW540691	-	Finland
Atheniella aurantiidisca	UBCF33062	MF908459	-	Canada
Mycena albiceps	F27622	MZ303026	-	USA
Mycena albiceps	taxon:1967169	MK234177	-	USA
Mycena anntennae	BAP 660	MH414550	MH385326	São Tomé
Mycena arcangeliana	252f	JF908402	-	Spain
Mycena arcangeliana	252b	JF908401	-	Spain
Mycena aurantiomarginata	Alb1-2C	MN328293	-	Argentina
Mycena aurantiomarginata	87h	JF908479	-	Italy
Mycena aurantiomarginata	H6032424	MW540657	-	Finland
Mycena aurantiomarginata	MO 353480	MN202587	-	USA
Mycena aurantiomarginata	CBS:357.50	MH856657	MH868173	France
Mycena breviseta	BAP 633	MH414551	MH385327	Príncipe
Mycena brunneoviolacea	BAP 594	MH414546	-	São Tomé
Mycena brunnescens	JSU125 (holotype)	ON778578	OP360941	China
Mycena brunnescens	JSU126	ON778579	OP360942	China
Mycena brunnescens	JSU127	PP152232	-	China
Mycena caeruleogrisea	FFAAS 0001	MW051896	OL711662	China
Mycena caeruleogrisea	FFAAS 0002	MW051897	OL711663	China
Mycena caeruleomarginata	FFAAS 0357	OL711669	OL711664	China
Mycena caeruleomarginata	FFAAS 0358	OL711670	OL711665	China
Mycena cf. cinerella	173	MF926553	-	-
Mycena chlorantha	AH51834	OR141886	-	Spain
Mycena chlorantha	ML11478	OR141887	-	Spain
Mycena chlorantha	AH57228	OR141885	-	Spain
Mycena chlorantha	AH57226	OR141884	-	Spain
Mycena cicognanii	AH57233	OR141876	-	Spain
Mycena cicognanii	AH57235	OR141878	-	Spain
Mycena cinerella	Aronsen051014	KT900146	-	Norway
Mycena filopes	95907045	ON175868	-	America
Mycena filopes	H6036864	MW540692	-	Finland
Mycena filopes	287f	JF908410	-	Italy
Mycena flavescens	AH57237	OR141883	-	Spain

Mycena flosoides	HUIF50128	OP358282	OP360939	China
Mycena flosoides	HUIF50129	OP358283	OP360940	China
Mycena flosoides	HUIF50128-R	OP745013	-	China
Mycena galericulata	TENN-F-069380ss1	MN088383	-	USA
Mycena galericulata	TENN-F-069380	MN088382	-	USA
Mycena galericulata	TENN-F-014675h1	MN088380	-	USA
Mycena galopus	NK269	FR846482	-	Czech Republic
Mycena galopus	152Ja14	KU516420	-	Poland
Mycena green-blueorhiza	J24082010	MW540696	-	Finland
Mycena green-blueorhiza	120b	JF908385	-	Italy
Mycena inclinata	S.D. Russell MycoMap 4978	MK532829	-	USA
Mycena inclinata	iNat:35919741	MN764198	-	USA
Mycena longinqua	BAP 648	MH414552	MH385328	Príncipe
Mycena maculata	CBS 237.47	MH856232	MH867761	France
Mycena maculata	CBS 239.47	MH856234	MH867763	France
Mycena meliigena	39	JF908423	-	Italy
Mycena meliigena	39d	JF908429	-	Italy
Mycena metata	iNat29471261	OK346496	-	USA
Mycena pearsoniana	TENN61384	JN182200	-	USA
Mycena pearsoniana	TENN61544	JN182199	-	USA
Mycena phaeonox	BAP 615	MH414564	MH385338	São Tomé
Mycena plumbea	PBM 2718 (CUW) Colorado	DQ494677	-	-
Mycena pterigena	AH56033	OQ633196	-	Spain
Mycena pterigena	H6038561	MW540701	-	Finland
Mycena pura	TENN65043	JN182202	-	-
Mycena rosella	Champ-21	KX449424	-	France
Mycena rosella	983a	JF908488	-	Italy
Mycena seminau	ACL136	KF537250	-	Malaysia
Mycena seminau	ACL308	KF537252	-	Malaysia
Mycena semivestipes	TENN61770	FJ596888	-	USA
Mycena strobilinoidea	151c	JF908392	-	Italy
Mycena strobilinoidea	151e	JF908393	-	Italy
Mycena strobilinoidea	NX0647	MG654743	-	China
Mycena strobilinoidea	NX0648	MG654744	-	China
Mycena subcaerulea	TENN-F-051121	OL711671	OL711666	USA
Mycena subcaerulea	TENN-F-057919	OL711672	OL711667	USA
Mycena supina	128a	JF908388	-	Italy

Mycena tenax	OSC 113728	EU669224	-	USA
Mycena tenax	OSC 113746	EU846251	-	USA
Mycena tubariodes	H6039061	MW540704	-	Finland
Mycena vulgaris	447h	JF908435	-	Italy
Mycena xantholeuca	LE 321752	MK474933	-	Russia
Phloeomana minutula	H6036841	MW540684	-	Finland
Phloeomana minutula	iNAT: 100003394	ON206666	-	USA