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Abstract

Cinnamomum  parthenoxylon (Jack)  Meisn.  is  a  tree  in genus Cinnamomum that  has

been facing global  threats  due  to  forest degradation  and  habitat fragmentation. Many

recent  studies  aim  to  describe  habitats  and  assess  population  and  species  genetic

diversity  for  species conservation  by expanding  afforestation  models  for  this  species.

Understanding their current and future potential distribution plays a major role in guiding

conservation efforts. Using five modern machine-learning algorithms available on Google

Earth Engine helped us evaluate suitable habitats for the species. The results revealed

that Random Forest (RF) had the highest accuracy for model comparison, outperforming

Support Vector Machine (SVM), Classification and Regression Trees (CART), Gradient

Boosting  Decision  Tree  (GBDT) and  Maximum  Entropy  (MaxEnt).  The  results  also

showed that the extremely suitable ecological areas for the species are mostly distributed

in  northern  Vietnam, followed  by the  North  Central  Coast and  the  Central  Highlands.

Elevation, Temperature  Annual  Range and Mean Diurnal  Range were  the  three  most

important parameters affecting the potential distribution of C. parthenoxylon. Evaluation

of the impact of climate on its distribution under different climate scenarios in the past

(Last Glacial Maximum and Mid-Holocene), in the present (Worldclim) and in the future

(using  four  climate  change  scenarios:  ACCESS,  MIROC6,  EC-Earth3-Veg  and  MRI-

ESM2-0) revealed that of C. parthenoxylon would likely expand to the northeast, while a

large area of central Vietnam will gradually lose its adaptive capacity by 2100.
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Introduction

Global climate change and substantial  illegal harvesting have been highly intricate and

unpredictable  phenomena,  posing  potential  risks  to  human  life,  flora,  fauna and  the

environment. The  degradation  of forest ecosystems has jeopardised  the  existence  of

various  species  in  nature  (Jhariya  et al.  2019). A  vivid  illustration  of this  point is  the

notable  decline  in  the  population  of Cinnamomum parthenoxylon  (C. parthenoxylon).

Due  to  these  reasons,  it  is  imperative  to  conduct  strategic  studies  across  the  entire

territory of Vietnam to conserve this valuable plant species in nature (Nguyen et al. 2021).

C. parthenoxylon was initially scientifically described by Karl Friedrich Meisner (Meisn.)

in  1864. This species belongs to Cinnamomum genus, which  is naturally distributed  in

Cambodia;  China  (Guizhou,  Hainan,  Yunnan,  Hunan,  Fujian,  Jiangxi,  Guangdong,

Sichuan, Guangxi); Indonesia (Sumatera, Kalimantan, Jawa); Lao People's Democratic

Republic; Malaysia; Myanmar; Thailand; and Vietnam (IUCN). In Vietnam, it is found in

provinces  in  the  North,  North  Central  and  some  Southern  provinces,  with  a  wide

distribution range from 50-1500 m in elevation across various types of forests, including

planted forests, production forests, natural forests and even shifting cultivation areas. The

species exhibits strong  regenerative  capabilities (Vu et al. 2022). However, excessive

exploitation is common, leading to the scarcity of natural forests in several provinces in

northern Vietnam.

Trees reach maturity to 20 to 25 years of age, with a breast height diameter ranging from

30 to 35 cm and a height of 20 to 25 m (Vu et al. 2022). It grows in primary and secondary

lowland to montane forests, sometimes on sands, sandstone or granite (IUCN 2022). In

general, the species demonstrates ecological  suitability primarily in  subtropical/tropical

moist forests. It is a versatile, economically valuable tree, providing high-quality timber

and  yielding  trunk  and  root  essential  oils  used  in  cosmetics and

pharmaceuticals production, with significant export value. The seeds yield fatty acids and

the essential oil has medicinal applications for treating various ailments and also misuse

as  a  psychoactive  drug  (Appendino  et al.  2014, Adfa  et al.  2022). Excessive  human

exploitation has significantly impacted the size of populations (Nguyen et al. 2021).

One of the imperatives for ecologists is to identify conservation solutions for species. In

the realm of biodiversity conservation, Ecological Niche Models (ENMs) have emerged

as a primary method for modelling the distribution of species within a geographic area (Li

et al. 2023). This constitutes an essential task for conservationists. This technique aids in

identifying  statistical  relationships  between  the  distribution  data  of  a  species  and

environmental  variables.  Many  reforestation  projects  have  employed  ENM to  identify
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suitable areas for cultivation, particularly for the production of forests or the cultivation of

medicinal plants. Our  study on  the  Tacca  chantrieri in  a  natural  park  of Vietnam also

utilised this  model  to  determine  optimal  distribution  areas  (Pham  et  al.  2023).

Subsequently, the resulting seedlings, products of the breeding process, were introduced

to  regions  with  climatic  conditions  conducive  to  their  development  and  growth.  This

collaborative effort involves contributions to both ecologists and the local community.

Amongst the primary types of ENMs, correlation models remain the most widely utilised in

ecological and evolutionary population characteristic studies, as well as in predicting the

future climate adaptation range of species populations. The correlation model assesses

the potential relationships between environmental predictor factors (such as: climate data

(Hijmans  et  al.  2005,  Fick  and  Hijmans  2017),  land-use  types,  soil  types and

topography and species spatial data (Pham et al. 2023). The widespread application of

ENM techniques has facilitated researchers in  generating new methods and ideas for

development.  Maximum  entropy,  developed  by Phillips  et  al.  (2006),  has  been

particularly prevalent in ENM, with thousands of studies over the decades. MaxEnt is a

machine-learning method that requires species presence data and a set of background

environmental  data.  This  work  requires  the  use  of  high-configuration  computers  to

process significant amounts of raster environmental data.

The potential  applications of ENM techniques have spurred researchers to  implement

these methods across various platforms. For instance, the R package (Hijmans 2018) is

widely used, as are comprehensive multi-model platforms such as 'SDM' (Nguyen et al.

2021) and 'biomod2' (Ngila  et al. 2023). Additionally, adjustments can be made using

generalised linear models to refine models, as seen with the MaxEnt approach (Phillips

et al. 2017). Recently, Google developers have incorporated MaxEnt into Google Earth

Engine (GEE) (Gorelick et al. 2017). GEE is a cloud-based platform for geographic spatial

analysis, leveraging the processing power of Google's computational services to conduct

analyses on a global to local geographical scale (Gorelick et al. 2017). Data available

from GEE, such  as satellite  images and  digital  elevation  models, have  proven  highly

useful in supporting large-scale spatial modelling efforts. GEE has diverse applications in

various fields, including forest management, water resource management and disease

risk  mapping.  Many  machine-learning  algorithms  commonly  used  in  ENM,  such  as

classification  regression,  random  forests  and  support  vector  machines,  have  been

integrated into  GEE, given their frequent application  in  satellite  image analysis. While

there is still limited research conducted on ENM using GEE (Crego et al. 2022), GEE has

recently  demonstrated  the  power  of  cloud  technology  in  handling  large  spatial  data

volumes, enhancing both model accuracy and run - time efficiency significantly (Amani et

al. 2020). 

In  this study, five different machine-learning algorithms (MaxEnt, Random Forest - RF,

Gradient  boosting  Decision  Tree  -  GBDT,  Support  Vector  Machine  -  SVM  and

Classification  and  Regression  Tree  –  CART)  were  used  to  model  the  potential

distribution  of C. parthenoxylon based  on  data  collected  from 117  species occurrence

points coupled with 20 environmental variables. Ultimately, we aimed to identify the most

suitable machine-learning algorithms for constructing an ENM for this species through

3



the habitat suitability index (HSI) (Crego et al. 2022). Five algorithms were employed to

model  the  species  geographical  distribution  in  the  present. Then,  we  selected  the

algorithm that provided the present model  with the highest accuracy. It was applied to

evaluate  the  future  models based on  climate  change scenarios from different regions,

including the periods 2061–2080 and 2081–2100, as well as the past models, including

the Last Glacial Maximum and the Mid-Holocene. The methods in this paper can also be

applied  to  conduct ENM studies for  species within  the  same  Cinnamomum genus in

Vietnam.

Materials and methods

Species data and study areas

Understanding  the  characteristics  of  forestry  ecological  zones  is  important  to  the

development  of  sustainable  management  strategies.  This  ensures  that  forestry

exploitation  is  conducted  in  a  balanced  manner, minimising  significant environmental

and natural resource losses (Trieu et al. 2020). In this study, we investigated the species

distribution  across  six forestry  ecological  zones  during  the  period  2019–2024  to

determine the habitat status and population size, including: Red River Delta  (Zone 1),

North-East (Zone 2), North-West (Zone 3), North Central Coast (Zone 4), South Central

Coast (Zone 5) and Central  Highlands (Zone 6). The authors have consulted previous

scientific  documents  and there  have been  no  records  of  the  species'  occurrence  in

habitats in South-East (Zone 7) and Mekong River Delta (Zone 8) (Fig. 1). The dataset

and  metadata  derived  from  our  study  can  be  accessed  on  the  Global  Biodiversity

Information  Facility  GBIF  (https://www.gbif.org/dataset/bc8c8fdb-f776-4759-

bf06-55c92e737d2b). The species' coordinate data were extracted in CSV format for use

as input data in Google Earth Engine.

Environmental parameters

We  selected  the  environmental  parameters  based  on  their  frequent applicability  and

ecological  significance  in  ENM  for  species  conservation. Finally,  three  sets  of

environmental  parameters  have  been  chosen  for  utilisation  to  predict the  ENM of C.

parthenoxylon at present, including:

• Terrain data: Elevation was used from Radar Topography Mission (SRTM) digital

elevation  data  which  is  an  international  research  effort  that  obtained  digital

elevation models on a near-global scale. This SRTM V3 product (SRTM Plus) is

provided by NASA JPL at a resolution of 1 arc-second (approximately 30 m) (Farr

et al. 2007).

• Climate data: We employed current climate data downloaded from the Worldclim

ver-2.1 worldclim.org) with a resolution of 30 arc-seconds (equivalent to 1 km ) to

determine suitable distribution areas for the species. The dataset comprises 19

climate variables, including: annual mean temperature (bio1); mean diurnal range
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(bio2); isothermality (bio3); temperature  seasonality (bio4); max temperature  of

warmest  month  (bio5);  min  temperature  of  coldest  month  (bio6);  annual

temperature  range  (bio7);  mean  temperature  of  wettest  quarter  (bio8),  mean

temperature of driest quarter (bio9), mean temperature of warmest quarter(bio10

) and coldest quarter (bio11); annual precipitation (bio12); precipitation of wettest

month  (bio13); precipitation  of driest month  (bio14); precipitation  seasonality  (

bio15);  precipitation  of wettest quarter  (bio16),  precipitation  of driest quarter  (

bio17),  precipitation  of  warmest  quarter  (bio18)  and  precipitation  of  coldest

quarter (bio19) (Fick and Hijmans 2017).

To forecast the future ENM of C. parthenoxylon, we utilied four climate change scenarios,

including:

• ACCESS scenario from the Australian Research Council Centre of Excellence for

Climate System Science.

• MIROC6 scenario  from the JAMSTEC (Japan Agency for Marine-Earth Science

and Technology, Japan) & AORI (Atmosphere and Ocean Research Institute, The

University of Tokyo, Japan) & NIES (National Institute for Environmental Studies,

Japan) & R-CCS (RIKEN Center for Computational Science, Japan).

• EC-Earth3-Veg scenario from Swedish Meteorological and Hydrological Institute

of Sweden.

• MRI-ESM2-0  scenario  from  Meteorological  Research  Institute  of  the  Japan

Meteorological Agency.

These  scenarios  were  applied  to  models  covering  the  periods  2061-2080  and

2081-2100. Four emission scenarios corresponding to shared socioeconomic pathways

(SSP126, SSP245, SSP370 and SSP585) were considered, as provided by CMIP6 with

net radiative forcing values of 2.6, 4.5, 7.0 and 8.5 W/m² (Fick and Hijmans 2017, Riahi et

al. 2017), all sourced from Worldclim version 2.1, 250 m resolution.

To  predict  the  historical  ENM  of  C.  parthenoxylon,  we  employed  two  paleoclimate

datasets downloaded from paleoclim.org, version 1.4:

• LGM (Last Glacial Maximum), approximately 22,000 years ago (Karger et al. 2017

),

• MH (Mid Holocene), approximately 6,000 years ago (Brown et al. 2018).

Methodology

We  applied  five  distinct  machine-learning  algorithms  in  Google  Earth  Engine  (GEE):

Random Forest -  RF (Breiman  2001), Support Vector  Machine  -  SVM (Vapnik  1995),

Gradient Boosting Decision Tree - GBDT (Friedman 2001), Classification and Regression

Tree  -  CART (Breiman  2017) and  MaxEnt (Phillips et al. 2017). A total  of 30% of the

occurrence  sample  data  were  reserved  for  assessing  the  model's  capacity, while  the

remaining 70% were used for training. Each run type generated a total of 10 replications,
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and the results were averaged. The remaining settings were maintained at their default

parameters.

Random Forest (RF) 

The  Random  Forest  algorithm  serves  as  an  ensemble  machine-learning  approach

applicable to both classification and regression tasks. It operates by assembling multiple

decision trees during the training phase and generates outcomes in the form of mode (for

classification)  or  average  prediction  (for  regression) based  on  the  individual  trees  (

Breiman 2001). In this framework, upon providing an input to the Random Forest (RF),

that input propagates to  each constituent partition. Each tree autonomously predicts a

classification and contributes a "vote" towards the respective class. The resulting output

values are determined via the average outputs derived from all  trees in the regression

phase. Two essential parameters for this classification algorithm are ntree (representing

the  number  of  trees  to  be  cultivated)  and  mtry  (indicating  the  number  of  variables

allocated  for  classification  at  each  node).  The  selection  of  the  sub-set  of  ntrees  is

contingent upon achieving the shortest processing time for attaining the lowest error. The

ntree range spans from 1 to 1000 trees, while mtry ranges from the minimum number of

variables  (minimum  independence  being  1)  to  the  smallest  count  of  independent

variables utilised in classification. Notably, the Random Forest algorithm has a built-in

feature selection system that makes it easier to process a lot of input parameters without

having to delete parameters to make the algorithm smaller.

Support Vector Machine (SVM)

SVM  is  a  supervised  machine-learning  algorithm  introduced  by Vapnik  (1995) for

classification and regression tasks. Its primary goal is to find the best possible decision

boundary that separates different classes in the data by maximising the margin between

them. This  optimal  hyperplane  maximises  the  distance  between  the  nearest  training

samples  and  the  separating  hyperplane  (Melgani  and  Bruzzone  2004).  Due  to  the

division  of  the  feature  space  by  hyperplanes,  addressing  non-linear  layer  boundary

problems results in lower accuracy. Thus, SVM employs the "kernel trick" to project data

into  a  higher-dimensional  feature  space  (Fassnacht  et  al.  2014),  enabling  the

establishment  of  non-linear  class  boundaries.  Standard  SVM  algorithms  might

underperform with highly imbalanced training sample sets or mislabelled samples. This

issue arises because the cost function, guiding standard SVM training, is penalised by

misclassified samples.

Gradient Boosting Decision Tree (GBDT)

The research employed the Gradient Boosting Decision Tree (GBDT) machine-learning

algorithm,  a  recursive  decision-tree  method  consisting  of  multiple  decision  trees  (

Friedman 2001). This technique involves iteratively combining multiple trees to arrive at

conclusive  decisions.  In  contrast  to  logistic  regression,  which  is  limited  to  linear

regression, GBDT demonstrates versatility in  addressing  various regression  problems,
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both linear and non-linear and applies to binary classification as well. Notably, XGBoost

(Extreme Gradient Boosting) stands out as an efficient implementation of GBDT due to its

superior  performance.  It  optimally  combines  software  and  hardware  enhancements,

delivering  superior  results,  while  utilising  fewer  computing  resources  compared  to

alternative  methods.  XGBoost  utilises  the  "max_depth"  parameter,  specified  upfront

instead of relying on a criterion-first approach and employs a depth-first strategy for tree

pruning,  enhancing  computational  efficiency  significantly.  Additionally,  the  algorithm

incorporates  the  distributed  weighted  quantile  sketch  technique  to  effectively  identify

optimal split points amongst weighted datasets.

Classification and regression tree (CART) 

The CART algorithm divides the n-dimensional space into rectangles that do not overlap

each other by recursion (Breiman 2017). First, an independent variable xi  is selected,

and  then  a  ui  value  corresponds. The  n-dimensional  space  is divided  into  two  parts.

Some points satisfy x  ≤ u , while others satisfy x > u . For a Variable that is not continuous,

only two values are equal or not equal. During the filing process rules, these two parts

are based on the first step to choose again an attribute and continue partitioning until

dividing the n-dimensional space. Properties have the minimum GINI coefficient value to

be used as partition index. For dataset D, coefficient GINI is defined as follows in Eq. (1).

GINI x (D) = 1 -   = kp (1),

in which k denotes the count of distinct sample types and pi  signifies the probability of

classifying a sample into type i. A lower GINI value indicates higher sample quality and

improved sorting effectiveness. The decision tree comprises multiple levels of nodes and

leaves. The term "maximum nodes" pertains to the highest number of leaves achievable

per plant, while the "minimum leaf population" is the smallest number of nodes generated

exclusively for training purposes. To construct an appropriate tree, enough nodes and

branches  must  be  generated.  The  maximum  node  value  has  no  upper  limit  unless

explicitly specified.

Maximum Entropy (MaxEnt) 

Species  Distribution  Models  (SDMs)  are  currently  applied  in  various  popular

applications, including  the  modelling  of bioclimatic  conditions, defining  environmental

envelopes, conducting  climate  change  experiments, employing  genetic  algorithms for

rule-set production and utilising MaxEnt for shaping tissues (maximum entropy). Amongst

SDMs,  the  MaxEnt  model  is  prioritised  due  to  its  outstanding  advantages,  such  as

requiring only current species data as input. It accurately constructs spatial environment

maps suitable for the species and assesses the importance of environmental variables in

species distribution. The MaxEnt model can simultaneously incorporate both continuous

and discrete variables as input data. This model has been widely used in habitat zoning

for the conservation of various plant species worldwide (Phillips and Dudík 2008, Warren

and Seifert 2011, Nguyen et al. 2021).

i i i i

i
2   
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To  understand  the  representation  of the  realised  distribution  of the  species by π, we

should examine the following sampling approach. An observer randomly selects a site,

denoted as x, from the set X comprising sites within the study area. The observer records

1 if the species is present at x and 0 if it is absent. If we designate the response variable

(presence or absence) as y, then π(x) represents the conditional probability P(x∣y = 1),

indicating  the  likelihood  of the  observer being  at x  given  that the  species is  present.

Applying Bayes' rule (2): 

(P(y=1∣x)=(P(x∣y=1)P(y=1))/(P(x))= π(x)P(y=1)∣x∣)     (2)

According  to  our  sampling  strategy, P(x)  =  1/∣X∣  for  all  x.  In  this  context,  P(y  =  1)

represents the overall  prevalence of the species in  the study area. The quantity P(y =

1∣x) is the probability of the species being present at the location x, taking values of 0 or

1 for plants, but potentially ranging from 0 to 1 for vagile organisms (Phillips and Dudík

2008).

Model evaluation analyses

The accuracy of the models is based on validation sets for each model iteration. The first

metrics are  the threshold-independent areas under the ROC curve (AUC-ROC). AUC-

ROC ranges from 0 to 1, where 1 signifies perfect discrimination between true positive

and false positive instances. Similar evaluations using AUC-ROC have been extensively

detailed in the study of Crego et al. (2022) on four machine-learning algorithms.

Habitat suitability index (HSI) evaluations

The Habitat Suitability Index (HSI) is an index that represents ENM through a digital map.

The output from each model in various periods generates a Habitat Suitability Index (HSI)

map. HSI is the result file in the last step on GEE. Then, it will be exported from GEE to

Google Drive. Finally, the data will be imported into QGIS 3.22 for classification using a

five-category habitat suitability index for C. parthenoxylon. Extreme suitable (HSI > 0.8),

high suitable (HSI: 0.7 – 0.8), moderate suitable (HSI: 0.6 – 0.7), moderate-low suitable

(HSI: 0.4 - 0.6), low or unsuitable (HSI: <0.4).

Result

Appropriate  machine-learning  algorithm  for  mapping  the  ENM  of C.
parthenoxylon in Vietnam

The evaluation results of the accuracy of species distribution models generated by five

machine-learning algorithms for the validation dataset indicate that the Random Forest

(RF)  algorithm achieved  the  highest accuracy  with  an  AUC-ROC  value  of 0.88. The

following  RF,  GBDT,  CART,  MaxEnt and  SVM algorithms demonstrated  accuracies of

0.86, 0.82 and 0.68, respectively. Consistent with these findings, the RF algorithm also
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exhibited  superiority  over  eight  other  machine-learning  algorithms  (SVM, GARP,  DT,

RIPPER, KNN, Logistic, ANN and NativeBayes) when constructing distribution models for

plenty plant species in the Latin American Region, achieving AUC accuracies ranging

from 0.82 to 0.96 (Lorena et al. 2011). In another study in Vietnam, Nguyen and Phung

(2023) utilised  Google  Earth  Engine  to  model  Hopea  odorata using  four  machine-

learning algorithms (RF, SVM, CART and GBDT), with the RF algorithm yielding the most

accurate outcomes and the AUC was 0.89 (Nguyen and Phung 2023).

Random forest (RF) has emerged as a valuable methodology in the academic realm for

modelling plant and animal  habitats, as well  as for monitoring alterations in  land use,

encompassing shifts in forest cover, land degradation and urban expansion. Moreover,

its utility extends to the domain of natural disaster forecasting (Venkatappa et al. 2020),

wherein  it  leverages  diverse  data  sources  including  meteorological  observations,

satellite  imagery and environmental  parameters to  anticipate  and mitigate  the adverse

effects of events such as floods and wildfires. Random forest techniques are also very

useful for studying climate change because they help figure out how much changes in

the climate will affect ecosystems, which makes it easier to predict how the environment

will change in the future. Campos et al. (2023) introduced the inaugural implementation

of GEE and conducted a comprehensive evaluation of MaxEnt, the prevailing method in

ecological  niche  modelling. The  results  demonstrate  that GEE modelling  yields high-

performance ENMs and produces spatial  predictions of comparable reliability to  those

generated by the widely adopted MaxEnt software, across various case studies.

Current Habitat Suitability for C. parthenoxylon in Vietnam

The results obtained showed that C. parthenoxylon was naturally distributed in Vietnam,

primarily  in  the  northern  regions, specifically  Zones  2  and  3,  North  Central  Vietnam

(Zones 4 and 5) and the Central  Highlands (Zone 6). According to Vu et al. (2022), C.

parthenoxylon was  widespread  in  evergreen  broad-leaved  forest  states  in  most

provinces  in  northern  Vietnam.  Therefore,  this  study  supplements  the  appropriate

distribution  areas  for  the  species  in  the  provinces  of North  Central  Vietnam and  the

Central Highlands.

The simulation results using the Random Forest algorithm revealed areas classified as

extremely high suitability, high suitability, medium suitability, medium-low suitability and

low  or  unsuitable  for  C.  parthenoxylon,  covering  48,371.48  km ,  54,225.77  km ,

38,838.62  km ,  42,950.08  km  and  137,384.93  km ,  respectively.  These  areas

correspond to 15%, 16.8%, 12%, 13.3% and 42.7% of the total area of Vietnam. Amongst

them, the highest suitability area is in Zone 3, followed by Zones: 2, 4, 6, 1, 5, 7 and 8,

with  the  average  of Habitat Suitability  Index (HSI)  values decreasing  in  the  following

values: 0.72, 0.61, 0.39, 0.36, 0.35, 0.24, 0.12 and 0.12 (Fig. 2, Fig. 3c).

2 2

2 2 2
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Dynamics of Habitat Suitability area (HSI) for C. parthenoxylon under past
and future scenarios

The ecologically suitable areas for species have exhibited significant fluctuations from

the Last Glacial Maximum (LGM) period to the present, particularly demonstrating erratic

changes  in  the  most extremely  suitable  regions, notably  in  northern  Vietnam. In  this

geographical area, there was a considerable loss of suitable habitat from the LGM to the

Mid-Holocene (MH) period, with slight expansion from the MH period to the present (Fig.

3a, b). Notably, the emergence of the Central Highlands (Zone 6) as a new ecologically

suitable zone after the MH period is evident (Fig. 3c). This shift during the transition from

the mid-Holocene to the present was attributed to a gradual  increase in  mean annual

precipitation and a reduction in both the duration and severity of the dry season.

The model incorporates two climate change scenarios to assess two time periods for the

species  distribution:  2061–2080  and  2080–2100,  under  the  best  emission  scenario

SSP126 and the worst emission scenario SSP585. Fig. 5 demonstrates that the ACCESS

and  EC  scenario  distinctly  depict  a  diminishing  trend  in  ecologically  suitable  areas,

particularly  pronounced  in  the  Central  Highlands  (Zone  6)  and  gradually  declining

towards the northern regions (Zones 1, 2 and 3). Generally, Zones 3, 4, 5 and 6 are the

most affected  by climate  change. In  contrast, the  dynamics of suitable  area  changes

observed when utilising the MIROC6 and MRI scenario is insignificant (Fig. 4 and Fig. 5).

A pattern of declining suitable habitats was observed for C. parthenoxylon from LGM to

the MH period. The total suitable area had lost nearly 50% compared to the expanded

suitable area (Fig. 5a and Fig. 6a). As of the present period, the lost areas only account

for one-third  of the expanded areas (Fig. 5b and Fig. 6b). The most significant loss in

suitable  species  distribution  was  observed  in  the  northern  regions,  particularly

concentrated  in  Zones  2  and  3.  Despite  increases  in  suitable  areas  across  most

remaining  ecological  zones  from  Zone  2  to  Zone  6  over  the  LGM, MH and  present

periods, there has been no notable expansion in southern Vietnam (Zones 7 and 8). 

Comparing four climate change scenarios showed that the ACCESS scenario emerged

as depicting the most pronounced future decline in distribution area of C. parthenoxylon.

Consequently, this section focuses on the separate evaluation of the ACCESS scenario

for eight ecoregions in Vietnam. The findings revealed a concentration of lost suitable

areas in central Vietnam across Zones 3–6, with a minor increase in suitable areas noted

in  Zones 2  and  3  (Fig. 5c  and Fig. 6c). Broadly, a  northeastward  expansion  trend  is

observed  for  highly  suitable  areas,  while  ecologically  diminishing  areas  are

progressively extending southward.
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Important parameters determining the distribution of C. parthenoxylon in
Vietnam

In  the forthcoming period, elevated precipitation and temperature will  likely lead to  an

expansion of the species' suitable habitat towards the northeast, the northeast also being

the  most suitable  habitat  during  the  LGM period. This  underscores  the  species'  high

sensitivity to various extreme climatic factors. Through an analysis of the determinants

influencing  species  distribution,  it  is  evident  that  elevation  was  the  most  important

parameter influencing the distribution of C. parthenoxylon in Vietnam, followed by bio07

(annual temperature range) and bio02 (mean diurnal range) emerged as pivotal climatic

variables influencing  the  redistribution  of suitable  zones, which  may either expand  or

contract  in  the  future  (Fig.  7).  These  novel  findings  suggest  that  managers  will  be

equipped with viable strategies to safeguard the species by enlarging the suitable habitat

areas.  Consequently,  the  research  outcomes  offer  fresh  insights  into  resource

management approaches tailored to the conservation of this species.

Discussion

GEE is a useful tool for species conservation

Our results align well with several studies worldwide and in Vietnam, demonstrating the

potential of Google Earth Engine (GEE) to provide timely and high-performance species

distribution models. Moreover, the models can integrate multiple parameters available on

publicly  accessible  cloud-based  data  (Crego  et al.  2022). While  numerous  machine-

learning methods have been proposed, for each environmental and species distribution

dataset, we  recommend employing multiple  machine-learning  algorithms to  select the

most optimal  model  (Nguyen  and  Phung  2023). The  number of samples gathered  to

determine  species  distribution  has  a  notable  impact on  predictions. Therefore, when

working  with  datasets that encompass the  distribution  of diverse  species populations,

there may be variations in the selection of input parameters associated with ecological

and environmental factors.

Recommendations for species conservation of C. parthenoxylon

A primary concern in evolutionary and ecological studies involves the factors influencing

and  sustaining  the  geographic  distribution  of  a  species.  This  study  revealed  that

elevation  significantly  influences  species  distribution.  Additionally,  variables  that  may

explain  species'  climatic  requirements  are  two  temperature-related  variables,  namely

annual temperature range bio7 (contributing significantly at 12.56%) and mean diurnal

range  bio2 (9.08%). Temperature  fluctuations  over  the  year  (bio7)  and  month  (bio2)

typically represent highland and temperate climate characteristics. Previous literature has

demonstrated that low temperatures negatively impact the emergence and mortality of
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seedlings within  the genus Cinnamomum (Li  et al. 2023). Besides temperature, some

research suggests that a species' adaptation can also be affected by annual precipitation.

The optimal annual precipitation for the growth of species within the genus Cinnamomum

ranges from 900 to 2500 mm (Meng et al. 2021). In this study, Precipitation Seasonality (

bio15) also significantly influences species distribution, accounting for 6.87% of general

impact.  Therefore,  climate  change  with  increased  precipitation  will  likely  expand  the

distribution range of the species towards the northeast. This finding aligns with the Meng

et al. (2021) study, which suggests conserving a species within the genus Cinnamomum

in  areas  with  suitable  soil  moisture  to  mitigate  the  impacts  of  drought.  Many  global

climate models predict that global warming will continue at a rate of 0.2°C per decade (

Araujo and New 2007). The anticipated impacts in many cases suggest that the altitude

and  latitude  of suitable  habitats  for  many species are  changing  to  cope  with  climate

change at the  regional  scale. Meanwhile, some species may adapt physiologically or

behaviorally (Singh and Kushwaha 2011). The study indicates that habitats with suitable

climatic  conditions  for  C.  parthenoxylon are  predicted  to  continue  expanding

geographically, particularly towards the north. The timing of phenological events such as

blossoming period also has potential ecological consequences.

Limitations of the study

Various factors  can  influence  the  size  of an  ecological niche, such  as recent human

activities,  geographical  barriers  and  biological  interactions  (parasites,  predators  or

competitors),  which  may  be  overlooked  when  predicting  potential  geographic

distributions (Meng  et al. 2021). Therefore, in  addition  to  the  environmental  variables

utilised  in  our  current  study,  other  factors  such  as  natural  history,  anthropogenic

pressures, impacts of natural enemies on prey species or inter-species competition may

affect the suitability of the habitat. To achieve this goal, predictive outcomes need to be

validated, based on the natural history knowledge of the species.

In this study, our limitation is that the models were assessed for accuracy by only AUC-

ROC.  AUC-ROC  is  considered  suitable  for  extensive  research  areas  with  abundant

species data and it often provides high accuracy, even when dealing with a small  and

restricted  sample  size (Lobo et al. 2008). Therefore, future  studies should  additionally

evaluate algorithm accuracy using AUC-PR. Sofaer et al. (2019) demonstrated that AUC-

PR is not influenced by the number of absences, making it a preferred metric due to its

sensitivity in accurately predicting presence locations, especially across extensive spatial

domains or when modelling the distribution of rare species (Crego et al. 2022).

Conclusions

Our  main  goal  was  to  look  at  how  to  make  Ecological  Niche  Models  (ENMs)  using

common techniques in the Google Earth Engine (GEE) platform. We used five different

machine-learning  algorithms:  Random  Forest  (RF),  Support  Vector  Machine  (SVM),

Classification  and  Regression  Trees  (CART),  Gradient  Boosting  Decision  Tree
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(GBDT) and  Maximum  Entropy  (MaxEnt).  The  outcomes  revealed  that  RF  exhibited

superior predictive accuracy in comparison with another algorithms. In addition, our study

looked  at  four  different  climate  change  scenarios:  ACCESS,  MIROC6,  EC-Earth3-

Veg and MRI-ESM2-0. These scenarios had different levels of emissions, ranging from

the most optimistic (SSP-126) to the most pessimistic (SSP-585). Our findings elucidated

that the  ACCESS scenario  delineated  a  discernible  trajectory of diminishing  potential

suitable habitats within the confines of Vietnam. Notably, notwithstanding this reduction,

pockets of highly suitable areas persisted and even expanded towards the north-eastern

regions of the country in light of future projections.
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Figure 1.  

Geographical distribution of sampling points of C. parthenoxylon in Vietnam. Study area (a);

adult plant (b). (Zone 1: Red River Delta; Zone 2: North East; Zone 3: North West; Zone 4:

North Central Coast;  Zone 5:  South Central Coast;  Zone 6:  Central Highlands; Zone 7:

South-East; Zone  8: Mekong River Delta (This map does not show offshore islands).
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Figure 2.  

The average HSI value and standard deviation (STD) of eight Forestry Ecological Zones in

Vietnam.
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Figure 3.  

Maps of HSI for C. parthenoxylon under the different periods in Vietnam. LGM (a); MH (b); At

Present (c).
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Figure 4.  

Changes in the distribution of  territories,  based on predictive HSI across future periods in

Vietnam. Three types of data were used to prepare the 35 HSI maps: two datasets simulating

past climate (LGM and MH), four datasets of future climate scenarios (ACCESS, MROC6, EC

and MRI)  corresponding to four  emission sets (SSP 126, 245, 370 and 585)  for  2080 and

2100 and one current climate dataset. This chart produces the statistics for the suitable area of

this species for  the environment through 35 horizontal bars representing the proportion of

suitable area in the total area of Vietnam. The results of each horizontal bar are divided into

four different suitability levels: extremely suitable zone (green), highly suitable zone (light blue),

high-moderate zone (yellow), moderate (orange), low or unsuitable (grey).
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Figure 5.  

Projected changes in extremely suitable areas of C. parthenoxylon in Vietnam during the Mid

Holocene (MH)  compared with Last Glacial Maximum (LGM)  (a); in the present compared

with Mid Holocene (MH) (b); in the future in agreement with ACCESS scenario, SSP-126 for

2100) compared with the present (c).

 

21

https://arpha.pensoft.net/zoomed_fig/11356339
https://arpha.pensoft.net/zoomed_fig/11356339
https://arpha.pensoft.net/zoomed_fig/11356339
https://doi.org/10.3897/BDJ.12.e122325.figure5
https://doi.org/10.3897/BDJ.12.e122325.figure5
https://doi.org/10.3897/BDJ.12.e122325.figure5


Figure 6.  

Changes in  the  extremely suitable areas for  C.  parthenoxylon in  Vietnam during the  Mid

Holocene (MH)  (a);  in  the  present  (b);  in  the  future  in  agreement  with  ACCESS climate

scenario, SSP-126 for 2100 (c).
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Figure 7.  

The proportion of  significant  parameters influencing the distribution of  C. parthenoxylon in

Vietnam. (bio07: annual temperature range; bio02: mean diurnal range; bio15: precipitation

seasonality; bio12: annual precipitation; bio14: precipitation of driest month; bio19: precipitation

of coldest quarter; bio09: mean temperature of driest quarter; bio13: precipitation of wettest

month; bio18: precipitation of warmest quarter; bio03: isothermality).
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