
Identifying Putative Subsurface Microbial Drivers

of Methane Flux on Earth and Mars

Haley M. Sapers , Victoria J Orphan , John E Moores , Lyle G Whyte , Mathieu Côté , Daniel A

Fecteau , Frédéric J Grandmont , Alex C Innanen , Calvin Rusley , Michel A Roux

‡ York University, Toronto, Canada

§ California Institute of Technology, Pasadena, United States of America

| McGill Univeristy, Montreal, Canada

¶ ABB Inc – Space and Defense, Québec, Canada

Corresponding author: Haley M. Sapers (haley.sapers@gmail.com)

Abstract

On Earth microorganisms are critical  drivers of the methane cycle, both producing and

consuming methane (Boetius et al. 2000, Knittel and Boetius 2009, Orphan et al. 2001).

Molecular  and  isotopic-based  investigations of archaeal-bacterial  consortia  catalyzing

the anaerobic oxidation of methane (AOM) in marine methane seeps identified the pivotal

role of these microorganisms in mitigating the release of methane into the atmosphere (

Knittel  and  Boetius  2009,  Orphan  et  al.  2001).  In  the  marine  environment,  AOM  is

predominantly  carried  out by closely  associated  consortia  of methanotrophic  archaea

(ANME)  and  sulfate  reducing  bacteria  (SRB)  coupling  methane  oxidation  to  sulfate

reduction in the absence of oxygen.

Wolf Spring (WS), Axel  Heiberg Island, Nunavut is a hypersaline cold spring methane

seep  and  the  only  known  terrestrial  permafrost hosted  methane  seep  known  to  host

ANME-1 archaea associated with AOM (Niederberger et al. 2010, Magnuson et al. 2022).

Wolf  Spring  is  an  unparalleled  analogue  for  putative  subsurface  brines  and  sites  of

methane  release  on  Mars.  Enigmatic  observations  of  methane  in  the  near-surface

Martian atmosphere remain a tantalizing potential biosignature.

The combination of field site characterization, microbial microcosm experiments, and in

situ methane  monitoring  represents  a  coordinated  interdisciplinary  effort  to  identify

methane driven microbial metabolisms not only critical to understanding methane flux in

the Arctic, but also as possible drivers to the methane cycle on Mars. Detailed microbial

characterization of these springs has identified a chemotrophic community dominated by

sulfur cycling  (Altshuler et al. 2022, Niederberger et al. 2010). To  date, microbial  and

geochemical  characterization  has  been  carried  out  on  sediment  samples  to  a  few

centimeters  depth.  This  study  expands  on  these  initial  studies,  with  the  successful

collection and analysis of deeper sediment cores at WS focusing on AOM activity to better

understand the microorganisms involved and the methane cycling capacity at depth.
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Two decades of observing methane on Mars (Mumma et al. 2009) have generated data

indicative  of a  dynamic, geochemical  system characterized  by a  profile  similar  to  the

release  of  methane  from  seeps  on  Earth  (Etiope  and  Oehler  2019)  producing  both

distinct pulses known  as plumes and  slow  background  seepage. These  observations

suggest as of yet unknown geochemical and potentially geobiological methane sources

and sinks.

While  methane  can  be  produced  abiotically  (Etiope  and  Lollar  2013), on  Earth  most

methane  is biogenic. Determining  the  biogenicity of CH  is non-trivial  and  requires a

correlated approach  including  determination  of carbon  isotopes. In  terrestrial  systems,

biogenic CH  is C depleted. To characterize methane sources and sinks on Mars, near

surface  measurements  at  a  frequency  not  possible  with  existing  instrumentation  are

required.

We  are  currently  developing  off-axis  integrated  cavity-enhanced  output  (OA-ICOS)

spectrometry  as  a portable  trace  gas  analyzer  capable  of  obtaining  high  frequency

measurements of methane at the sub-ppb level (Sapers et al. 2021). Optimizing OA-ICOS

trace  methane  measurements  at  WS  will  help  refine  sensitivity  and  measurement

cadence  in  a  Mars-like  environment as  well  as  providing  new  remote  methane

monitoring capabilities for Arctic methane emissions. We are currently developing in situ

CH : CH  capabilities  using  OA-ICOS  technology.  The  importance  of  δ  C  as  a

biosignature is summarized in Fig. 1.
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Figure 1.  

Right: Submarine methane cold seep, Eel River  Basin, California USA. Source methane is

thermogenic characterized by light δ C values up to -27 ‰. Variable contributions by more

depleted gas hydrates and a local methane pool with a biogenic signature down to -67 ‰. C

values from ANME biomass is significantly C depleted (as low as -96 ‰). δ C values from

authigenic aragonite are significantly more depleted than that  of  normal marine carbonate

indicating in situ mineralization of CO  produced via AOM. Data from (Orphan et al. 2004).

Center: Wolf Spring, Axel Heiberg Island, Nunavut, Canada. Source methane has an isotopic

signature  indicative  of  a  predominately thermogenic source  (δ CH  -38  ‰).  Data  from (

Niederberger et al. 2010). δ C measurements from biomass collected at depth is currently

planned.  Representative  δ CH  for  background  atmosphere  taken  from  ~ 7  km  altitude

during a stratospheric balloon flight launched from Kiruna, Sweden sampling Arctic air  mass

during the Arctic summer (Röckmann et al. 2011). Left: Methane evolved from mudstones in

Gale Crater, Mars. There are two main methane sources, background seepage and periodic

plumes, contributing to the methane pool in the near surface atmosphere with unknown δ C

values.  Recently,  CH  was measured from a mudstone collected in  Gale crater  with  an

extremely wide range of values (House et al. 2022). These highly C-depleted values are

reminiscent of the authigenic carbonates produced via mineralization of biogenically produced

CO  during AOM in submarine methane seeps. While the carbon isotopic reservoirs on Mars

are not  well constrained,  on Earth  highly C  depleted value are consistent  with  methane

derived through microbial methanogenesis. All δ C values compared to V-PDB.
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