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Abstract

Tens  of millions  of images  from biological  collections  have  become  available  online

over the  last  two  decades.  In  parallel,  there  has  been  a  dramatic  increase  in  the

capabilities of image analysis technologies, especially those involving machine learning

and  computer  vision.  While  image  analysis  has  become  mainstream  in  consumer

applications,  it  is  still  used  only  on  an  artisanal  basis  in  the  biological  collections

community,  largely  because  the  image  corpora  are  dispersed.  Yet,  there  is  massive

untapped  potential  for novel  applications and  research  if images of collection  objects

could  be  made  accessible  in  a  single  corpus.  In  this  paper,  we  make  the  case  for

infrastructure that could support image analysis of collection objects. We show that such

infrastructure is entirely feasible and well worth investing in.

Keywords
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Introduction

Owing  to  their  crucial  role  in  documenting  the  Earth's  biodiversity,  global  biological

collections  are  likely  to  contain  samples  representing  most  known  macro-

biodiversity. These  collections  serve  as  invaluable  assets  for  various  research  fields

including ecology, conservation, natural history and epidemiology (Bradley et al. 2014, 

Davis et al. 2019, Antonelli  et al. 2020). Furthermore, they represent an important yet

underutilised resource for addressing global challenges (Soltis 2017, Hussein et al. 2022

).  They  also  play  a  role  in  the  verifiability  of  research  and,  in  some  cases,  the

repeatability. Therefore, ensuring global access to these collections and integrating their

data is of paramount importance for the future.

To keep up with demand for access to collections, digital imaging of biological collections

has progressed  at pace  (Fig. 1). In  January 2023, the  Global  Biodiversity Information

Facility (GBIF) had more than 51 million preserved or fossil  specimens with an image.

This  number  is  expected  to  grow  substantially.  For  example,  digitisation  of  the  Kew

Herbarium, which holds over 7 million specimens, will  add to already major digitisation

programmes in Australia, China, Europe, USA and others (Nelson and Ellis 2018, Willis

et al. 2018, Borsch et al. 2020, Chinese Virtual Herbarium 2021).
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With this increase in digital  images, it is not surprising that computer vision techniques

are  now  being  applied  to  them. In  recent years, machine  learning, in  particular, has

become mainstream and has been built into workflows that start with digital images and

metadata  and  result in  statements  about what is  shown. Such  workflows can  extract

information  about biological  specimens from typed  or  handwritten  labels  (Allan  et al.

2019). There  are  many other uses for image analysis of specimens, as we elaborate

below (Pearson et al. 2020, Soltis et al. 2020).

Improving online access is important because collections are physically dispersed, yet

interconnected (Nicolson et al. 2018). Researchers are rarely able to obtain a full set of

specimens for a single taxon, collector or geography from a single institution. Most are

scattered  across  tens  or  even  hundreds  of  collections.  Digital  access  breaks  down

physical barriers, making collections accessible as a unified research tool (Hardisty et al.

2020). Online collections data also serve as a resource for researchers who are not at

institutions  housing  their  specimens,  a  particularly  important  issue  given  historic

imbalances  in  the  amassing  of  collections  in  the  Northern  Hemisphere,  from  high-

biodiversity regions elsewhere (Grace et al. 2021).

Unified  access to  specimen  images is  particularly  important because  image  files  are

comparatively  large  and  image  analysis  pipelines are  demanding  on  processor  time.

Current  internet  bandwidth  makes  transferring  large  numbers  of  files  a  bottleneck,

particularly if they need to be moved multiple times. Therefore, it makes sense to store

large numbers of images close to where processing will occur. While such infrastructure

exists for other data types (e.g. Copernicus for remote sensing and WLCG for the Large

Hadron  Collider),  no  such support  exists  for  biological  collections-based  image

processing.  Researchers  amass  images  and  process  them  independently,  which  is

unscalable and is unsuitable for dynamic image corpora and workflows intended to run

multiple times.

The Vision 

We envisage a data space for biological  collections with  a centrally accessible  image

corpus with  built-in  processing. This  will  allow  anyone  to  access digitised  images of

specimens,  without  having  to  concentrate  on  the  logistics  of  corpus  creation  and

maintenance. Building  accessible  interfaces would  also  remove technological  barriers

that  prevent  taxonomists,  ecologists  and  others  from using  advanced  analysis  tools.

Through  supervised  expert  contributions, the  system could  integrate  knowledge  from

many disciplines. Such a corpus would constantly be furnished with new images from

publishing  collections  and  support  citation  and  reproducibility  of  workflows  and  their

underlying collections, in alignment with FAIR Data Principles (Wilkinson et al. 2016). It

would  make  it  easier  to  curate  image  datasets  and  use  them  for  research  (e.g.  for

benchmarking  and  challenges  for  machine  learning)  and  for  activities  like  teaching

species identification.

The Scope 
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Images from living organisms are not considered here, nor other media, such as sounds,

though they are undoubtedly useful and deserve attention. Though the Al challenges of

images  of  living  organisms  are  different,  their  numbers  are  at  least  two  orders  of

magnitude larger and increasing more rapidly than digitised preserved specimens and

dedicated infrastructures already exist to process them, such as Pl@ntNet and iNaturalist.

The  creators  of  such  images  are  also  more  varied,  as  are  the  relevant  licensing

requirements. An exception might be images of living organisms in situ before they were

preserved. Such images give additional context to the specimen and can potentially be

used  alongside  the  preserved  specimen  for  human  and  computational  comparison  (

Goëau et al. 2021).

In this paper, we present the purposes for a unified infrastructure of specimen images

and envisage what it might look like. We answer the questions: what research could be

done with such an infrastructure, who would use it, what functionality would be needed

and what are the architectural requirements?

We imagine a future where we can search across global collections for such things as the

pattern of a butterfly’s wing, the shape of a leaf, the logo of a specific collection, or for

examples of someone’s handwriting.

Purposes

Infrastructure  needs to  justify its costs through benefits, not just for science, but wider

society. We also need to understand the users and other beneficiaries. Below, we outline

some uses and users for an imaging infrastructure for collections; there are undoubtedly

more we have yet to imagine.

Species identification 

Most experiments  with  species identification  from specimen  images have  focused  on

herbarium specimens (Carranza-Rojas et al. 2017, Kho et al. 2018, Pryer et al. 2020, 

Hussein  et  al.  2022).  This  is  because  they  are  two-dimensional,  follow  a  fairly

standardised format and are highly available. Digitisation of herbarium specimens has

preceded that of other organisms. Nevertheless, because insect specimens (Fig. 1), in

particular,  are  much  more  numerous,  there  is  clear  demand  for  their  automated

identification (Valan et al. 2019, Høye et al. 2021). Insect colour and morphology are well

preserved in specimens. This means that automatic identification trained on specimens

may  work  on  living  insects  and  vice  versa,  having  the  possibility  to  create  training

datasets for rarely-seen organisms (Goëau et al. 2021, Goëau et al. 2022). Specimens

from natural  history collections have also  been used successfully to  train  models that

assist in sorting images from camera traps deployed in ecological monitoring (Høye et al.

2021).

The state of preservation, uniformity and distinctiveness of pollen grains also makes them

good targets for automated identification, whether they are from preserved collections or

fresh. Indeed, pollen  is  well  preserved  as fossils  and  sub-fossils  making  them useful
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targets to analyse evolutionary and ecological change (Romero et al. 2020, Hornick et al.

2022). Machine learning could transform pollen identification into a much more routine

process  (Bourel  et al.  2020), with  potential  applications  in  environmental  monitoring,

archaeology and forensics.

The main advantage of automated identification of digital images of preserved specimens

is not accuracy, but potential for high throughput. Accessing large numbers of images in a

suitable computational environment remains a critical factor to mainstreaming automatic

specimen identification across collections.

Extracting trait data 

Morphological,  phenological  and  colourimetric  traits  are  often  visible  on  specimen

images (e.g. Fig. 2a). Such traits might be diagnostic and are also used to understand

how traits evolve and what they tell  us about evolution. Some animals, such as insects

and birds, maintain colour well and may be interesting targets for research (Hoyal Cuthill

et al. 2019, Hantak et al. 2022). Amongst other avenues, studies have shown that colour

is an important factor in climate change adaptation of insects (Zeuss et al. 2014).

Functional traits 

Morphological functional traits have been used to predict impacts of climate change on

ecosystem  functioning  (Pigot  et  al.  2020),  species  distributions  (Pollock  et  al.  2011, 

Regos et al. 2019), community structure (Li et al. 2015) and how these traits fit into the

land surface component of climate models (Kala et al. 2016). Functional traits recorded

from  preserved  specimens  supplement  field-recorded  data,  filling  geographic  and

temporal gaps and providing legacy data (Heberling and Isaac 2017, Bauters et al. 2020,

Kommineni  et  al.  2021),  as  well  as  potentially enabling  discovery  of  newly-relevant

morphological  traits.  Examining  such  traits  in  preserved  specimens  is  considerably

cheaper than fieldwork.

Leaf morphological traits are particularly amenable to extraction from herbarium sheets,

because they are laid flat and do not necessarily require magnification (Heberling 2022).

Size,  dimensions,  arrangement,  dentation  and  venation  are  all  targets  for  machine

learning and experiments with extracting these parameters have shown it to be feasible

and reliable (Triki  et al. 2020, Weaver et al. 2020, Heberling 2022, Weaver and Smith

2023). Extraction of traits from collections of insects has great potential as their state of

preservation is high (Høye et al. 2021).

In  the  case  of  fish,  the  large  number  of  species  globally,  enormous  number  of

morphological traits and substantial variation mean we can only hope to fill gaps in our

knowledge  of traits  if  preserved  specimens are  used  (Hay et al. 2020). Furthermore,

specimens have  the  advantage  that there  is  a  voucher where  measurements can  be

verified and new measurements taken.

Using well-documented algorithms for extracting traits from specimens would be much

more  efficient if a  single  large  corpus were  available  for  analysis and  measurements
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could be less prone to error and more reproducible if source code and training data are

open and shared (Meeus et al. 2020).

Collection practices have changed considerably over more than four centuries (Kozlov et

al.  2021).  Additionally,  characters  of  specimens  can  change  upon  preservation,  for

instance, shrinkage associated  with  drying  (Tomaszewski  and Górzkowska 2016). Yet,

with  suitable  awareness  and  controls,  there  is  much  to  be  learned  from  trait  data

gathered from digital specimens.

Phenology 

A trait of particular interest for climate change studies is phenology. Changes in seasonal

temperatures  and  rainfall  affect  hatching  or  emergence  of  dormant  animals  and

maturation  of  leaves,  flowers  and  fruits.  Such  changes  may  lead  to  a  mismatch  in

seasonality amongst organisms (Renner and Zohner 2018). Detecting the phenological

state of an organism is possible through machine learning (Lorieul et al. 2019, Davis et

al. 2020, Triki et al. 2021, Goëau et al. 2022, Katal et al. 2022) though not to the level of

accuracy achieved manually. Nevertheless, the obvious advantage of machine learning

is the potential  for high throughput processing of images to  track phenological  shifts (

Pearson et al. 2020).

Species interactions 

Organisms are in constant conflict with predators, parasites and pathogens. Specimens

provide a record of this, revealing long-term changes related to environmental change,

such as the introduction of non-native species (Vega et al. 2019), pollution and climate

change (Lang et al. 2019). For example, manually-extracted changes in leaf herbivory of

herbarium specimens were  correlated  with  climate change  and  urbanisation  in  north-

eastern  USA  (Meineke  et  al.  2019).  Meineke  et  al.  (2020) further  investigated  the

potential  for extracting leaf damage data from herbarium specimens, through detection

and classification of images split into grid cells.

Collections care, curation and management 

Information  is  also  needed  for  curation,  organisation,  storage  and  management  of

collections. An example is the need to identify specimens treated with toxic substances,

such as mercuric chloride formally used to prevent insect damage. Over time, mercuric

chloride leaves stains on mounting paper. Schuettpelz et al. (2017) used a convolutional

neural network to detect such stained sheets. It has a false-negative rate of 8%, which is

comparatively high error for a situation related to toxicity, yet could likely be improved

with provenance information.

One can imagine image analysis workflows that detect the type of mounting strategy and

preservation  state  of specimens. This  would  help  curators  triage  remounting  or  other

forms of curational care.

Visual features of the specimen 
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Image segmentation and object separation 

Image  segmentation  is  a  fundamental  image-processing  task  to  facilitate  higher-level

tasks, such as object detection and recognition (de la Hidalga et al. 2022). In preparation

for analysis, such as searching for signatures or to support a human-in-the-loop, it is often

more efficient to  recognise individual  objects in  an image, classify them and separate

them into multiple images - for example, if images contain multiple specimens or labels

need to be extracted for transcribing. Specimens from different collections show variety in

backgrounds,  caused  by  different  mounting  techniques  and  digitisation  processes.

Separating objects in preparation for further analysis may help establish training sets that

ignore differences in background and positioning.

In an infrastructure built for image analysis, standard segmentation workflows could be

run and optimised to avoid researchers repeating these steps and users could choose

whether to analyse the whole image, all segments or specific classes of segment.

Labels 

Specimens are usually annotated with information on labels. In the case of plants, these

labels are on the mounting paper; for insects, they are on the mounting pin; while  for

larger zoological and plant specimens, labels might be tied to the specimen or on, or in,

specimen  jars.  Therefore,  as  images  of  specimens  often  contain  text,  it  is  useful  to

provide printed and handwritten text recognition as part of an image processing pipeline.

If text can be recognised, these additional metadata can be used to enrich items of the

collection  and  automatically  perform cross-collection  linking. Furthermore, recognised

text can aid in the digitisation process and validation of metadata, reducing manual input

and improving data quality (Drinkwater et al. 2014).

Although  state-of-the-art  text  recognition  performs  well  on  printed  text,  accurately

recognising  handwritten  text is  still  a  challenge. Older  handwritten  text might contain

unique style, but even such cases can still provide valuable information, for example, text

written by the same author could be automatically clustered, based on visual similarity

and used to identify the collection and reduce manual validation.

Besides text, secondary data  hidden in  handwriting, ink colour, mounting paper, label

shape and printed label decorations (Figs 2, 3, 4) can be used to determine their origins

and history. Image analysis by itself can be enough to cluster specimens for particular

purposes, for example, a group from a particular expedition. 

Rulers and colour checkers 

Another element often  seen  on  digitised  specimen images are  rulers, scale  bars and

colour  checkers.  These  are  very  varied,  for  example,  in  size,  often  customised  for

particular  imaging  campaigns. Colour  checkers  are  used  to  validate  colour  fidelity  of

specimen  images,  while  rulers  provide  a  reference  to  the  actual  specimen  size.

Especially when digitising with a digital camera, it can be complex to calculate the actual

dimensions  of  the  specimen,  as  it  depends  on  the  lens  and  individual  camera
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parameters. Therefore, detection  of rulers and  colour  checkers on  digital  images can

prove useful  to  estimate the actual  sizes and correct colour balance. A generic object

detection  or  instance  segmentation  model  can  be  trained  to  detect  these  common

objects. If all rulers in a collection are of a fixed size, the length of the detected ruler can

be used to calculate a transformation from pixels to the ruler’s unit of measurement (e.g.

cm,  mm).  This  can  then  be  combined  with  specimen  segmentation  models,  to

automatically extract dimensions and specimen traits (Triki et al. 2021). When rulers are

not of uniform size, the distance transformation needs to be estimated by calculating the

pixel  distance  between  the  measurement stripes  or  bars  on  the  ruler  (Bhalerao  and

Reynolds 2014). To extract the specific unit of measurement, the text denoting the unit on

the ruler can be recognised or additional metadata about the specimen can be used to

infer it.

Finding stamps and signatures 

Specimens are often stamped, printed or embossed with crests that indicate provenance

or ownership (Fig. 4). An example are those of botanical exchange clubs (Fig. 4), which

operated in Europe from the middle of the 19  century into the 1930s (Groom et al. 2014

). Tens of thousands of specimens were exchanged this way. If a specimen was part of a

botanical exchange club, it implies that duplicates exist and circumscribes the dates of

collection. Although stamps usually contain some text, they are often not easily read with

standard OCR engines.

Many specimens are  signed, either  by  their  collector, determiner  or  both  (Figs  2, 3).

Expert curators within an institution learn to recognise signatures of prolific collectors, but

they are often illegible without that knowledge. Yet, it is common practice to use the name

of a collector, together with their collecting number to identify a collection event uniquely.

Furthermore, due to exchanges, loans and gifts, a collector’s specimens may be spread

amongst a  number of institutions. If the  name is not distinct enough to  be transcribed

accurately, finding the specimens from a specific collector across the whole  corpus of

global collections would be an impossible task without some automated process.

Unsupervised learning 

The stacked layers of deep neural networks can be regarded as a set of transformations

that learn useful representations of the starting data. Using representations of specimen

images learned by neural networks, rather than extracted metadata, would allow content-

based interaction with  and comparison between images. Such interaction is useful  for

tasks  where  a  high-quality  labelled  dataset  does  not  currently  exist  or  where  the

characteristics  of  a  specimen  that  are  important  to  a  task  are  not  well-defined.  For

instance, White  et  al.  (2019) used  representations  of  specimen  images  learned  by  a

neural network trained to classify fern genera to directly compare specimen morphology

and  test  biogeographic  hypotheses. Similarly, Hoyal  Cuthill  et  al.  (2019) trained  a

network to estimate the similarity of two sets of butterfly specimen images and used the

learned representations to test mimicry hypotheses.

th
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Some tasks require researchers to inspect and compare specimen images individually.

The  reduced  dimensionality  of  deep  representations  in  combination  with  scalable

nearest-neighbour search (Johnson et al. 2021) makes direct comparison of images very

efficient. This opens opportunities to  explore  collections through  image  content rather

than through metadata and makes it possible to search a collection for similar specimens

during identification and identify misidentified or poor-quality specimens.

Recently, interest in learning useful  representations from unlabelled data has surged (

Rives  et  al.  2021) in  the  field  of  unsupervised  (or  self-supervised)  representation

learning. These studies have shown that large numbers of unlabelled images (millions to

billions)  can  be  used  to  learn  representations  that  work  well  as  a  starting  point  for

supervised classification tasks, such as species identification (Walker et al. 2022). A large

repository  of  images  would  facilitate  this  research  by  allowing  the  development and

curation of the two types of dataset necessary for self-supervised representation learning:

large training corpora and smaller, task-specific benchmarking datasets (Van Horn et al.

2021).

Conceptual Framework of the Infrastructure

Unlocking the potential for machine learning in natural history collections is contingent on

technical  infrastructure  which  is  easy-to-use,  interoperable  with  regional  and  global

biodiversity data platforms and accessible to the global  scientific community. Here, we

present a conceptual framework conceived as a roadmap for building such infrastructure.

Although the  infrastructure  could  be  implemented  in  different ways (e.g. distributed  or

centralised),  we  describe  three  core  technical  components,  coordinated  by  the

orchestration  logic: (1)  the  repository  to  index data  and  metadata; (2)  the  storage  of

images,  models  and  data;  and  (3)  the  processing  of  images  to  generate  new  data,

annotations and models (Fig. 5). The orchestration logic will consist of components such

as  technical  workflows,  security  protocols  and  application  integrations  that  enable

implementation  of  business  logic  and  access  to  services.  In  addition  to  technical

components, the infrastructure will require a governance structure and set of protocols, as

well as training and outreach to reach the intended audience.

Component 1: The Repository 

A dedicated repository is needed which will  reference and index information, such as

specimen  metadata,  image  metadata  and  annotations,  alongside  machine-learning

models with their performance metrics and outputs (Fig. 5). Some existing infrastructures

partially  accommodate  these  data  types, such  as  GBIF for  specimen  data,  but  none

integrates the  full  spectrum of specimens, images, models and  model  outputs. These

existing  infrastructures  can  be  reused,  either  by  integrating  or  connecting  with  the

repository  or becoming  it  by  extending  their  own  capabilities.  The  repository  should

operate on FAIR principles, facilitating data discovery and reuse. This includes support

for, or  provision  of,  persistent identifiers  for  the  different types  of content, as  well  as

different data standards.
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Image metadata in the repository will include a reference to the image object located in

the  storage  layer  (Component 2), along  with  annotated  training  image  data. Different

kinds  of  image  annotations  will  be  supported,  including  geometric-based  regions  of

interest (ROI), taxonomic or ecological traits and textual representations of label data. For

interoperability, data standards supporting machine readability of these annotations are

required.  As  different  standards  exist  for  these  annotations  and  not  all  are  equally

suitable for any model, the platform should ensure support for multiple standards, such as

COCO (JSON), Pascal  VOC (XML) and image masks (rasterised or vectorised images).

Multiple annotations can be made on a single specimen record, making persistent record

identifiers  vital. Metadata  indexed  in  the  repository  will  facilitate  findability  of suitable

annotations,  for  instance,  to  serve  as  training  data.  A  feedback  mechanism  may  be

implemented to correct and/or update annotations.

Pre-trained machine-learning models will be stored in the repository and made available

for reuse, along with accuracy metrics and model outputs, such as segmented features or

species metadata. To ensure findability, models should be classified by use-case through

the use of keywords, since they are often trained for very specific use-cases, but could

later be reused in other contexts. As part of the metadata, suitability scores will facilitate

comparison of models in terms of their efficacy, possibly through community feedback or

by  analytics  that  take  standardised  model  performance  metrics  into  account.  These

results should be linked to the original images used in the training of the model (on the

platform) and also to the images that were analysed in the use case. Some of this might

be achieve by implementing the International Image Interoperability Framework (IIIF); for

example, a IIIF compliant server  could  provide  the  segments  of images dynamically  (

Snydman et al. 2015).

Persistent identifiers,  such  as  Digital  Object  Identifiers  (DOIs)  or  hash-based  content

identification  (e.g. Software  Heritage  PIDs for  code  or  simple  SHA-256  hashes  for

images), will be assigned to digital objects produced during the use of the infrastructure,

to make them citable. It will  also be possible to assign persistent identifiers to versions,

reflecting  any  subsequent  updates  to  the  digital  objects.  The  repository  will  display

citations of the  persistent identifiers, including  links to  publications in  which  they are

included, as well as any instances of their reuse in other projects within the repository. It

is not only important to make the digital objects or outcomes openly available, but also

under  appropriate licences  (e.g.  Creative  Commons)  as  indicated  by  the FAIR   for

research software (FAIR4RS) working group and Labastida and Margoni (2020). In many

cases,  a  CC0  licence  waiver  would  be  appropriate,  because  of  the  lack  of  a novel

intellectual creation step (Patterson et al. 2014, Egloff et al. 2017).

Managed through the orchestration logic, the repository is connected to a storage system

and the processing unit, while having features, such as a content-based search engine,

to browse not only on the traditional human-annotated metadata (e.g. date and place of

observation, taxonomy and others), but also on information extracted from the images

themselves. Advanced features can be built into the system, such as the ability for users

to  upload  an  image  and  search  the  catalogue  by  similarity  (e.g.  similar  handwritten

signatures) or query and filter collections of data using indexed metadata extracted from
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observations,  either  humanly  or  automatically  annotated.  In  general  terms,  such

functionality  can  be  summarised  as the  ability  to  aggregate  to  each  specimen  media

record all  the information that is extracted from it either manually or automatically and

indexed making it available to query. 

Some good examples of similar content-based systems exist in production today. Pl@nt

Net, BeeMachine and iNaturalist provide species identification of living organisms from

photographs. Results can be refined by providing the user’s location, limiting possible

results to  the  most likely matches. A more  general  example  is Google  Image Search,

where anyone can search images using either a keyword (e.g. dog) or using an image as

the  search  term. This function  is also  available  on  Google  Photos, where  a  user can

search  their  personal  photos  for  specific  people,  different  types  of  objects,  places,

ceremonies and so on. Although different, all those systems share similar logic: (1) they

include models trained for specific tasks (e.g. object detection) that have been created

offline using massive datasets in large GPU clusters (e.g. Model Zoo and COCO dataset);

(2) when a new image is added to the collection (or possibly all, when new models are

deployed), in addition to the submitted user tags, the images are processed with these

models  (inference/prediction  pipeline)  and  tags  are  extracted;  (3)  the  extracted

information  is  saved  and  indexed  and  made  available  as  searchable  data.  The

envisioned system should provide similar functionality, with the added complexity of the

myriad  of  different  models  and  images  illustrated  by  the  use  cases  in  the  previous

section.

Component 2: The Storage 

The storage component (Fig. 5) encompasses all physical storage that is a local part of

the  platform and  on  which  images, models,  metadata  and  results  are  stored. It  also

includes functions, managed via orchestration logic, required to manage those data as

far  as  access control  (e.g. governance)  and  low-level  file  management is  concerned

(such as back-ups). Higher level  management, such as handling uploads, selection of

specific images and the moving of images to  processing, is the responsibility of other

components.  The  storage  component  is  divided  into  two  areas,  archive  and  regular

(active) storage. This distinction is primarily a technical one, separating high-performance

storage required for accessing images while training models, from less advanced storage

for other purposes.

Whether  images  are  mirrored  from  their  original  source  on  to  the  platform  or  only

downloaded temporarily on to the platform when needed, is a technical design question

that should  be  answered  during  implementation. While  this  choice  has no  functional

impact,  it  does  have  profound  technical  implications,  as  well  as  budgetary

consequences.  Locally  mirroring  all  images  referenced  in  the  repository  guarantees

availability and predictable speed of access, but will also require extensive management

to accurately reflect changes made to the source material and will take up an increasingly

large storage volume. On the other hand, while downloading images on-the-fly greatly

diminishes  the  required  storage  volume,  it  implies  less  control  over  availability  and

carries the risk of images becoming unavailable over time.

11

https://plantnet.org/en/
https://plantnet.org/en/
https://plantnet.org/en/
https://plantnet.org/en/
https://beemachine.ai/
https://beemachine.ai/
https://www.inaturalist.org/home
https://www.inaturalist.org/home
https://modelzoo.co/
https://modelzoo.co/
https://cocodataset.org/
https://cocodataset.org/


Scientists are already used to large communal  storage infrasturecures, such as Dryad

and Zenodo. Zenodo  was  developed  under  the  European  Organisation  for  Nuclear

Research (CERN) and supports open science by providing a platform for researchers to

share and archive their data and other research outputs.

Storage of training images 

Images  to  use  in  training  are  discovered  through  the  repository  component,  which

functions as a central index of images, metadata, models and results. Actual image files

might be hosted on the platform, or remotely, on servers of associated parties. In case of

the  latter,  because  of  the  technical  requirements  (i.e.  high  throughput,  guaranteed

availability, low latency), these images must be downloaded to the platform and be made

available  locally to  be  used  in  the  training  of models. Image selection  is done  in  the

repository and the orchestration logic functions as a broker between the repository and

remote hosting facilities, taking care of downloading images. The storage component is

responsible for the local  storage of these files. This includes facilitating access control

(i.e. keeping track of what images belong with which training jobs) and making images

available  to  the  processing  component, where  the  actual  training  takes place. In  the

scenario  where  the  local  storage  of training  images is  temporary, the  images will  be

deleted once the training cycle of a model has been completed, while only the references

in the repository to those images are retained with the resulting model. The handling of

images while stored in the system, including their accessibility and deletion policies, is

subordinate to the platform’s governance policies.

Storage of models 

Once a model is deemed suitable for use, it may be published as such in the repository.

The  repository  functions  as  a  central  index  that  allows  researchers  to  find  suitable

models,  while  the  actual  code  that makes  up  a  model  will  be  stored  in  the  storage

component.  Once  a  model  has  been  selected  for  use  (see  also  next  section),  it  is

retrieved  from  storage  and  copied  to  the  processing  component.  A  similar  scenario

applies when a stored model is used as the basis from which to further train a new model

or  a  new  version  of the  same  model  (transfer  learning).  Since  there  are  no  specific

performance requirements for storing a model, they will be stored in the archive section of

the  media  storage  component.  Besides  models  that  have  been  trained  locally,  the

platform can also host and publish models that were trained elsewhere. From the point of

view of storage, these models are  treated as identical  to  ones trained locally. As with

images,  availability  of  and  access  to  models  stored  on  the  platform  is  subject  to

governance policies.

Storage of images for analysis 

Another  function  of  the  processing  component  is  using  ‘finished’  models  for  image

analysis,  resulting  in  annotation  of newly-uploaded  images  with  or  without metadata

(such as classification or identified regions of interest). For this purpose, images will be

uploaded by researchers, after having selected a model or models from the repository to
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run on the images. Uploaded images will be stored in the storage component and kept

there for the duration of the experiment. Responsibility for running these experiments,

including  the  loading  and  execution  of the  selected  models, lies  with  the  processing

component.  Actively making  available  the  images  to  the  models  is  facilitated  by

orchestration logic.

Once  experiments  have  been  completed,  these  images  will  be  moved  to  a  low-

performance  part of the  media  storage  component (archive  storage), where  they are

stored  with  the  newly-acquired  metadata,  in  line  with  relevant  governance  policies.

These archived images and their annotations are registered in the repository component,

so  as  to  make  them findable.  If,  at  a  later  stage, someone  wants  to  perform further

analysis on them, these images can be moved back to the active storage area.

The technical requirements for analysis processes are far less demanding than those of

training processes, especially with regards to the need for constant high throughput. It is,

therefore, conceivable that the platform will  allow access to  stored models through an

API, in which case no images are stored locally.

Storage of model results 

User value  is gained from access to  results derived from the  models on  the  platform.

These results might be produced as described hitherto or by use of a model remotely,

either via API access or even by entirely running a model remotely. The form of these

results can be manifold; besides previously mentioned examples, such as classification

or  the  identification  of  regions  of  interest,  they  can  also  include  more  generalised

performance characteristics of a model, such as the average recall  and precision for a

given  set of images in  case  of a  classification  experiment. Uploading  such  results, in

whatever format they might take and associating them with the models that generated

them is the responsibility of the repository component, while the physical storage of data

is taken care of by the storage component. Negotiation between the two components,

both when storing and when retrieving, is performed by the orchestration logic. Again, all

handling of these results follows the platform’s governance policies.

Component 3: The Processing 

The processing component encompasses all the services and pipelines to compute tasks

on batches of data, incoming or already existing in the system, such as those stored in

the repository and storage components (Fig. 5). In other words, it supports a myriad of

computational-intensive tasks, from ingesting new data, to  the automated extraction of

information from media, as well as exporting new datasets or scheduling the training of

new models or the retraining of old ones.

This component requires a considerable amount of computing power to handle all  the

scheduled tasks in the system, which can even be elastic (i.e. cloud principles) given the

fluctuating demand. These are delegated by the orchestration logic component, a set of

services that are responsible for handling external requests, such as those from front-end

applications or other external services using public APIs, serving as both gateway and
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manager to the main internal components – repository, storage and processing (Fig. 5).

The greatest computational demand comes from tasks related to the creation of models,

periodically  updating  the  existing  services  or  adding  new  ones.  For these,  specific

hardware capabilities, such as several GPU/TPU instances, may be required from time to

time.

The processing component and the tasks and services supporting it, should be able to

scale vertically, that is, to handle more tasks by adding more RAM, more CPU cores or a

better GPU to a cluster node, but preferentially also able to scale horizontally, namely, by

adding more nodes, hence able to process multiple independent tasks in parallel.

The processing component can be organised into sub-components, amongst which are:

(1) Data ingestion; (2) Machine-learning models and analytics services (such as image

segmentation,  objection  detection  and  image  classification);  (3)  Analytics  pipelines

(processes  or  programming  scripts  built  to  provide  analytical  services);  (4)  Data

integration; and (5) Data export, which helps to deal with any given use case, such as

depositing  new  images and  metadata, annotating  the  images and  depositing  trained

deep-learning models.

Data ingestion 

Data ingestion is the process of adding new data to  the system, encompassing tasks,

such as crawling, parsing, validating and transforming information to  be indexed. This

process includes several data types, including metadata, images, annotations, analytics

pipelines (which  includes services and models) and so  on. To  this end, specific tools

should handle incoming data to the infrastructure, following different paths depending on

the data’s source and type.

When  a  new  dataset is  submitted, each  entry  undergoes a  series  of tasks  to  parse,

validate and transform the information to facilitate a standardised entry. This may include

crawling  additional  data  from  external  services  like  Wikidata  or  to  compute  metrics,

validate geographic coordinates and map them to locations. Additionally, this process will

check for duplicate entries, based on the existing data in the infrastructure.

Image annotations 

One of the key features of the system will  be the ability to  provide annotations for the

existing  images. When  a  set  of  annotations  is  supplied,  these  need  to  be  ingested,

validated  and  transformed  into  standard  data  types and  structures, depending  on  the

problem (e.g. classification, object detection, natural  language  processing  and  optical

character  recognition). After  preprocessing, the  set of annotations will  be  additionally

validated to find whether they duplicate existing annotations, if the attached labels make

sense, if the tagged region falls inside of the image and so on. This information will then

be indexed and provided by the repository component and can be included in datasets,

which will serve to improve existing inference tools and develop new ones.

Machine-learning models and analytics services 
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The  same  applies  to  other  tasks,  such  as  submitting  a  new  analysis  pipeline.  New

pipelines include  data  and  metadata; machine-learning  models; source  code; service

containers; automated  workflow  and  service  provisioning  information  as code; results

and others. Each of these must be verified and tested, before being included as part of

the analytics toolset.

An analytics pipeline sub-component comprising a set of services and functionalities is

responsible for processing images or other media, to automatically infer information that

would otherwise be manually tagged, for example, identifying a specific trait. To this end,

each service  provides specific functionality and comprises a  sequence of instructions,

from  using  multiple  pre-trained  models,  to  image  transformations  or  other  solutions,

depending  on  the  problem at hand. For instance, when  ingesting  a  dataset, for  each

given specimen image, various analytics pipelines will be scheduled to run, each made

of different steps and deep-learning models trained for specific tasks (e.g. detect mercuric

chloride stains, identifying specific traits, extracting label information).

Build machine-learning models and services 

Analytics pipelines are built of pre-trained models, as well as containerised applications

and services previously built. The most computationally intensive part of the infrastructure

will  be  training,  building  and  updating  these.  It  should  be  possible  to  schedule  the

execution of these heavy tasks, including data preparation (e.g. resize, augmentation),

configuring  the  environment  and  parameters,  training  the  models,  assessing  the

performance and building, testing and packaging the services.

The system must allow the definition of service workflows as code, from the infrastructure,

to  model  training  and  application  packaging.  This  requires  two  parts.  First,  fully

documenting modelling experiments to guarantee reproducibility, such that anyone can

rerun the experiment and obtain the exact model and results. This involves the system

indexing the data (i.e. link to the exact dataset) and code with the exact environment (e.g.

by using conda and venv under Python or renv in R), the pre-trained models and all the

required  parameters,  hyperparameters  and  similar,  as  well  as  controlling  the

randomness of such models (e.g. initialising seed state).

Secondly,  the  entire  analytics  pipeline  should  be  documented  as  code,  from

infrastructure to application level. This allows for the exact replication of the build, test,

package  and  deployment.  Over  the  last  decade,  several  technologies  and  sets  of

practices have appeared to attain such goals, normally linked to software development

concepts,  such  as  DevOps,  MLOps  and  GitOps.  GitHub  provides Actions to  attain

continuous integration and deployment, allowing the automation of the entire workflow of

a  software  service, from building  to  testing  and  deploying, based  on  simple  text files

(YAML). On the other hand, Docker images and similar solutions allow services to  be

containerised using similar simple definitions and shared across various environments,

enhancing  consistency  and  portability,  while  simplifying  deployment  and  scaling

processes. Going a step further, it is nowadays possible to define both the infrastructure
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and  how  services  interact  as  code  too  (e.g.  used  under  Docker  compose  or  with

Terraform and Kubernetes).

Such concepts must be exploited by the processing component, allowing submission of

novel  analytics  pipelines. As the  number  of annotated  datasets  grows over  time, the

system  might  schedule  the  retraining  of  models  and  associated  pipelines,  reporting

results and, if desired, replacing the existing analytics pipelines. Moreover, all the details,

code and pre-trained models can be provided, so  anyone can reuse them anywhere.

Given the computation power needed, possibly requiring several GPUs for bursts of work,

hybrid solutions offloading part of this work to cloud providers could be implemented, as

an alternative to hosting and managing GPU clusters.

Data integration 

Data integration will push the data generated by the above-mentioned sub-components

to the respective parts of the system - the repository (e.g. metadata registry of the trained

models and images, datasets, annotated data etc.) and the storage (e.g. image files and

their derivatives, pre-trained models, metadata packages etc.).

Data export 

The  system  will  catalogue  millions  of  specimens,  each  with  variable  amounts  of

metadata. These data can be filtered with complex queries, based on several parameters

and fields. As an example, a user might want to search for records of a specific species,

containing  images and  annotate  them regarding  the  presence  of signatures  within  a

specific timespan. Requesting the generation of an image dataset, based on the result of

such  query, requires several  processing  tasks for scheduling, from the  extraction  and

merging of the relevant metadata into the desired format, to resizing images if needed,

assigning  a  persistent  identifier,  generating  a  dataset  page  and  notifying  the  user.

Moreover, if images and  annotations for  the  same  search  criteria  are  updated  in  the

following months, the user might request the dataset to be updated, generating a second

version and assigning a new or versioned persistent identifier. Part of this functionality is

already demonstrated by GBIF,  which uses background jobs to export datasets on user

request (excluding  images and  DOIs, but allowing  the  export of metadata, based  on

queries). Moreover, this sub-component may also be responsible for exporting machine-

learning datasets to public platforms, such as the Registry of Open Data on AWS or Goo

gle Datasets, allowing users to easily mount them on external cloud solutions.

Discussion

The  21  century  is  already  seeing  catastrophic  changes  in  global  biodiversity.  The

resources needed to monitor and address these changes are far greater than the cadre

of professional  ecologists and taxonomists can provide. Machine learning promises to

dramatically increase our collective capacity and, in complementary fashion, prioritise the

attention of human taxonomists where it is most needed.

st
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There are direct benefits of our envisaged infrastructure to biodiversity and research into

artificial  intelligence, but there  are  also  positive  impacts for society, the  economy, the

environment  and  for  collection-holding  institutions,  for  example,  in  support  for  more

evidence-based  environmental  policy; improved  pest detection  and  biosecurity; better

monitoring of endangered species and better environmental forecasting to name just a

few (also see Popov and Shevskaya (2021)).

Making images accessible  in  a  common infrastructure is an opportunity for collections

with  limited  resources to  gain  access to  tools that would  otherwise  be  unavailable  to

them. Indeed, Open Access for all researchers, including those from the Global South, is

critical to ensure that collections fulfil their obligations to access and benefit sharing. As a

large percentage of the world’s natural history specimens are housed in the Global North,

scientists from the Global  South are excluded from data on their own countries unless

suitable access is provided (Dahdouh-Guebas et al. 2003, Fazey et al. 2005). To facilitate

this will  require  a  commitment to  openness, ease  of use, good tutorials, user-focused

design and capacity building.

Such an infrastructure aligns with the European Strategy for Data (European Commission

2020), which aims to overcome challenges related to fragmentation, data availability and

reuse, data  quality and interoperability and dissolve barriers across sectors. Having a

global infrastructure in place will incentivise natural history collections and their funders

to digitise their specimens and attract funding to do so.

Opportunity,  obstacles  and risks  to  realising  a  shared  infrastructure  for  natural

history collections 

Given  the  many  use  cases, the  large  number  and  diversity  of  stakeholders  and  the

potential for innovative services and research, what is holding us back from creating the

proposed  infrastructure?  One  clear  issue  is  that experts  in  machine  learning  are  not

always  aware  of the  needs  or  potential  of  biological  collections. These  communities

should  be  brought  together  to  find  the  areas  where  collections  can  benefit  from

generalised  approaches.  A  lack  of  standardisation  and  consequent  lack  of

interoperability  further  impedes  progress  (Lannom  et  al.  2020).  The  Biodiversity

Information  Standards  (TDWG)  is  just  one  of  the  organisations  that  might  support

development of such  standards, notably  the Audubon  Core  maintenance  group, who

maintain Audubon Core, a standard for the metadata of biodiversity multimedia resources

(Morris  et al. 2013). TDWG have  worked  in  close  collaboration  with  GBIF to  develop

standards  on  biodiversity  and  one  could  imagine  similar  alliances  would  benefit  the

envisaged infrastructure and its users.

We  suggest that the  most intractable  obstacles  to  a  shared, global  infrastructure  are

socio-political. We envisage an infrastructure without institutional and national borders, in

which  people,  organisations  and  nations  are  co-beneficiaries  of  a  system,  in  which

knowledge, skills, financing and other resourcing are acknowledged (Pearce et al. 2020).

Furthermore,  tracking  the  provenance  of  resources  is  also  needed  to  ensure

reproducibility and replicability of the system (Goodman et al. 2014).
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Experiments  so  far  lack  scalability,  often  have  manual  bottlenecks  and  experience

significant time lag in production of results due to limited access to computational  and

physical  resources  and  to  human  resources  to  create  and  curate  training  datasets  (

Wäldchen and Mäder 2018).

The establishment of a new paradigm in research on collections impacts the frameworks

and workflows currently used in collection curation and the research based on them and

can, therefore, be disruptive. One of the greatest risks is introducing inherent errors and

biases  that  are  derived  from  the  algorithms  and  prejudices  that  may  be  embedded

unknowingly in training data (Boakes et al. 2010, Osoba and Welser 2017).

The institutions that hold collections have safeguarded this rich resource of information

about biodiversity and natural history. They are major stakeholders for these materials to

be  preserved  and  associated  data  to  become  available  for  researchers  and  society.

Paradoxically, making the data accessible digitally might create the illusion that there is

no need to maintain the collections physically. In fact, the more information we can extract

and link, the more valuable physical  collections become for any future technology that

can be applied to them. It is, therefore, critical to guarantee the link between the digital

and  physical  specimen  to  ensure  neither  becomes  obsolete,  risking  the  real  value

attached to both.

The future 

Objects  in  natural  history  collections  represent  one  of  the  most  important  tools  to

understand life on our planet. Mobilising the capacity to analyse billions of objects with

the  help  of  machine  learning  is  essential  to  meet  the  challenge  of  conserving  and

sustainably using biodiversity. This paper is written to emphasise the huge potential and

the challenges. The main limitation to achieving our vision is not the software for machine

learning, nor the ideas for using it, but the accessibility of data and images of specimens

in a computational environment where they can be processed efficiently.

Many additional uses can be imagined for the analysis of non-specimen data, that is, the

additional information that is linked to the physical object, either when directly written on

attached labels or linked to inventories, catalogues or spreadsheets (Hardisty et al. 2022

). There is also enormous potential for biological collections that have, so far, not been

the main focus of digitisation, including microscope slides of thin sections; histological; or

other extractions (e.g. Fig. 2b). Although imagination is the ultimate limit, we are currently

limited by the availability of infrastructure to conduct such research.
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Figure 1. 

Progress in digitising natural history collections. A growing number of images are accessible

from the Global Biodiversity Information Facility, iDigBio or BioCaSE. To examine the rate and

volume of  digitisation,  we used six snapshots of  these databases taken since 2019,  using

Preston, a biodiversity dataset tracker  (Poelen 2022, Poelen and Groom 2022, Elliott et al.

2022). Although likely to be an underestimate of specimen images, because not all are linked

to the snapshot datasets, trends give an indication of digitisation progress. The number  of

available images is increasing approximately exponentially. There are seven times more plant

specimens than insects in our most recent snapshot, though insects are far more numerous in

nature, an estimated 5.5 million species of insects (Stork 2018) vs. 350,000 plants (Cheek et

al. 2020). Nevertheless, the rate of increase of insect images is faster and, if one extrapolates

the curves, it is easy to imagine that insect images will surpass plant specimens in a few years.

Imaging of mammalia (~ 6,400 species; Burgin et al. (2018)), while increasing, is not doing so

as rapidly as insects.
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a

b

Figure 2. 

Zoological specimen labels contain rich data.

a: Paratype of Heraclides rumiko, showing information encoded on multiple labels. Catalogue

number  NHMUK012824346 by The Trustees of the Natural History Museum, London (CC-

BY).     

b: Specimen of a chewing lice (Philopteridae): Strongylocotes  lipogonus,  a parasitic species

including  host  information  on  the  label.  Catalogue  number  NHMUK010694309 by  The

Trustees of the Natural History Museum, London (CC-BY).  
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a b

c d

Figure 3. 

Labels of specimens from Meise Botanic Garden contain secondary data features, such as

handwriting, ink colour, label shape and label decorations.

a: Label  of Potentilla   recta with  distinctive  label  decorations  (BR0000009398214; CC-By-

SA) (B);   

b: Label of Eriophorum angustifolium where collector’s signature can be recognised (BR0000

005134137; CC-By-SA);   

c: Distinct cup-shaped label of Agathosma villosum (BR0000015671271; CC-By-SA);    

d: Label  of Alyssum   calycinum collected  by  François  Crépin,  notorious  for  illegible,  but

recognisable handwriting (BR0000010426135; CC-By-SA).      
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Figure 4.  

Embossed  crests  and  stamps  on  herbarium  specimens. A Lion  and  crown  signifying

ownership by the Botanical Garden of Brussels BR0000013433048 of BR Herbarium (CC-BY-

SA 4.0). B Stamp of the A.C. Moore Herbarium at the University of South Carolina as on

specimen  USCH0030719  (image  in  public  domain). C Stamp  of  the  Watson  Botanical

Exchange Club on specimen E00809288 of the Royal Botanic Garden Edinburgh Herbarium

(public domain). D Stamp of the A. C. Moore Herbarium at the University of South Carolina,

USCH0030719 (public domain). E Stamp of the Botanical Exchange Club of the British Isles

on specimen E00919066 of the Royal Botanic Garden Edinburgh Herbarium (public domain).

F Stamp with handwriting is evidence of a loan from the BR Herbarium to the Herbarium

Musei Parisiensis, P, on specimen BR0000017682725 of Meise Botanic Garden (CC-BY-SA

4.0). G Printed crest, P00605317 held by Museum National d’Histoire Naturelle (CC-BY 4.0). 

H A  stamp  on  specimen  LISC036829  held  by  the  LISC  Herbarium  of  the  Instituto  de

Investigação Científica Tropical. l a crest used by the Muséum National d’Histoire Naturelle

(MNHN - Paris), on specimen PC0702930. (licensed under CC-By 4.0). J A stamped star with

unknown meaning on the same specimen as (B). K A stamp belonging to the Herbarium I.

Thériot,  on  specimen  PC0702930 at  the  Herbarium  of  the  Muséum  National  d’Histoire

Naturelle.  (CC-BY 4.0).  L A stamp belonging  to  the  Universidad  Estatal Amazónica,  now

housed in the Missouri Botanical Garden Herbarium under catalogue number 101178648 (CC

-BY-SA 4.0).
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Figure 5.  

Framework of an infrastructure for analysis of specimen images showing the services, storage

and relationships between them.
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