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Abstract

Experiences  gained  through  in  person  (in-situ)  interactions  with  ecosystems  provide

cultural ecosystem services. These services are difficult to assess because they are non-

material, vary spatially and have strong perceptual  characteristics. Data obtained from

social  media  can  provide  spatially-explicit  information  regarding  some  in-situ  cultural

ecosystem  services  by  serving  as  a  proxy  for  visitation.  These  data  can

identify environmental  characteristics (natural, human and built capital)  correlated  with

visitation and, therefore, the types of places used for in-situ environmental interactions. A

range  of spatial  models  can  be  applied  in  this  way that vary  in  complexity  and  can

provide  information  for  ecosystem  service  assessments.  We  deployed  four  models

(global regression, local regression, maximum entropy and the InVEST recreation model)

to the same case-study area, County Galway, Ireland, to compare spatial models. A total

of  6,752  photo-user-days  (PUD)  (a  visitation  metric)  were  obtained  from Flickr.  Data

describing  natural,  human  and  built  capital  were  collected  from  national  databases.

Results  showed  a  blend  of  capital  types  correlated  with  PUD  suggesting  that  local

context,  including  biophysical  traits  and  accessibility,  are  relevant  for  in-situ  cultural

ecosystem service flows. Average trends included distance to the coast and elevation as

negatively correlated with PUD, while the presence of major roads and recreational sites,

population  density  and  habitat  diversity  were  positively  correlated. Evidence  of  local

relationships,  especially  town distance,  were  detected  using  geographic  weighted

regression. Predicted hotspots for visitation included urban areas in the east of the region

and rural, coastal areas with major roads in the west. We conclude by presenting a guide

for researchers and practitioners developing cultural  ecosystem service spatial  models

using  data  from social  media  that considers data  coverage, landscape  heterogeneity,

computational resources, statistical expertise and environmental context.

‡ § ‡

©
. 

mailto:anneill@tcd.ie


Keywords

cultural  ecosystem  services,  visitation,  social  media,  spatial  modelling,  geographic

weighted regression, maximum entropy, InVEST, Ireland, ecosystem service assessment

Introduction

Cultural ecosystem services are defined as “the non-material outputs of ecosystems that

affect physical  and  mental  states of people”,  some of which  require  physical  (in-situ)

interactions between people and ecosystems (CICES v.5.1,  Haines-Young and Potschin

(2018)). These outputs include benefits, such as improved physical and mental  health,

opportunities for recreation and social interaction, connections to socio-cultural heritage,

spiritual enrichment and biodiversity appreciation (Scholte et al. 2015, Haines-Young and

Potschin 2018). The flow of cultural  ecosystem services at a given place is the result of

the  underpinning  stock, condition  and  configuration  of natural  capital  (natural  assets

including geology, hydrology, soil, air and biodiversity), human capital (knowledge, skills

and  social  networks within  a  population) and  built capital  (human-made infrastructure

and assets, such as roads and buildings) (Chan et al. 2012a, Fish et al. 2016, Costanza

et al. 2017, Díaz et al. 2018, Langemeyer et al. 2018). The values associated with these

benefits encompass instrumental, relational, intrinsic, economic and  community-based

values, that contribute to peoples’ health, happiness and well-being (Chan et al. 2016).

Assessments of cultural  ecosystem services are required  to  incorporate these  benefits

and values within environmental decision-making and secure their long-term provision (

Daily et al. 2009, Costanza et al. 2017, Dasgupta 2021).

Assessing cultural ecosystem services is challenging for several reasons, one of which is

that they vary spatially. As the mosaic of capital stocks varies across the landscape, so

too does the basket of services those ecosystems provide to  people  (Carpenter et al.

2009, Andrew et al. 2015, Costanza et al. 2017). This is complicated further because

different individuals receive different cultural  ecosystem services flows, based on their

own values and preferences (Chan et al. 2012b, Díaz et al. 2018, Chan and Satterfield

2020).  This  variation  across  spatial  scales  and  between  people  means  that  cultural

ecosystem services have strong perceptual characteristics and have been described as

simultaneously  “everywhere  and  nowhere”  (Chan  et  al.  2012a,  Chan  et  al.  2016

). Investigating  where  people  choose to  visit across a  landscape can lend insight into

places  that  facilitate  in-situ  cultural  ecosystem  service  flows  and,  therefore,  provide

benefits to people. This is relevant for decision-making and environmental management

because, without spatially-explicit assessment, these  services are  vulnerable  to  being

excluded from consideration (Daily et al. 2009, Andrew et al. 2015, Plieninger et al. 2015

).

Social media platforms contain information related to in-situ environmental experiences

through  uploaded  content  and  associated  metadata,  such  as  GPS  coordinates,
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descriptive text, titles and date of content creation (Oteros-Rozas et al. 2018, Zhang et al.

2020). Accessing these data represents a passive form of data collection at a scale that is

rarely  possible  with  alternative  methods  (interviews,  visitor  surveys)  and  has  proven

especially  useful  in  otherwise  data-scarce  or  inaccessible  regions (Wood  et al. 2013, 

Ghermandi and Sinclair 2019, Wood et al. 2020, Zhang et al. 2020). The popularity of

social  media  platforms,  the  potential  for  large  volumes  of  data  collection  and  lower

resource  costs  have  made  social  media  studies  on  the  topic  of  people-environment

interactions increasingly common (Zhang et al. 2020).

GPS-tagged content uploaded to social media is an emergent source of spatial data used

as a proxy for visitation occurrence and intensity because it records a "digital footprint" of

places where people have visited (Wood et al. 2013, Levin et al. 2015, Tenkanen et al.

2017, Mancini  et al. 2018, Zhang et al. 2020). Researchers and practitioners can then

apply spatial  statistics to create models of visitation as a proxy for some form of in-situ

cultural ecosystem service flow. This is an expanding field of research as cultural services

are amongst the services most commonly studied (Czúcz et al. 2018) and in-situ cultural

ecosystem service studies, recreation in particular, are a leading application of data from

social  media (Cheng  et  al.  2019).  While  not  every  study  uses  the  same  cultural

ecosystem service framework to define their research question, the applications of GPS-

tagged  content  to  explore  people-environment  interactions  are  numerous.  Examples

include mapping visitor behaviour within national parks (Levin et al. 2015, Tenkanen et

al. 2017, Sinclair et al. 2020) and at tourism hotspots (Fisher et al. 2019, Kim et al. 2019, 

Pickering et al. 2020); evaluating aesthetic preferences using photographic content and

location (Figueroa-Alfaro  and  Tang  2017, Yoshimura  and  Hiura  2017); evaluating  the

success of restoration  projects (Kaiser et al. 2021); and  identifying cultural  ecosystem

service flow hotspots across landscapes (Richards and Friess 2015, Oteros-Rozas et al.

2018, Arslan and Örücü 2021). 

Modelling the relationships between visitor occurrence and environmental characteristics

(both  biophysical  and  human  and  social  attribtues)  is  a  common  analysis  applied  to

spatial data from social media (Zhang et al. 2020). Examples of spatial model structures

include  the  calculation  of  regional-level  average  relationships,  local-level  spatially

varying  relationships  and  predictive  models  of  visitation  suitability  and  occurrence.

Expertise in the most up-to-date spatial statistics and modelling approaches is a potential

barrier to  creating such assessments given the growing volume and availability of "big

data" from  social  media  databases  and  machine-learning  and  remote  sensing

applications  (Richards  and  Friess  2015,  Pettorelli  et  al.  2017). The  need  for

such spatially-explicit  assessments of  cultural  ecosystem  services is  growing  as

momentum  behind  natural  capital  accounting and  ecosystem  service

assessment continues to build (Hein et al. 2020, United Nations 2021).

We selected four different modelling approaches to spatial data from social media, based

on  their  use  within  literature:  1)  global  regression,  2)  local  regression,  3)  maximum

entropy (MaxEnt) and 4) InVEST recreation model. Throughout this paper, we use the

term global with reference to the study area in its entirety (not in the planetary sense) and

corresponding models that summarise one average relationship (Tenerelli  et al. 2016).
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While presented as four parallel workflows for clarity and comprehension, they are really

a nested set of regression analyses that share the same foundational underpinnings, but

vary in their depth, complexity and method of computation. The assessment is focused on

the spatial  modelling of biotic, in-situ, cultural  ecosystem services using visitation as a

measure  of potential  people-ecosystem interactions (label  3.1  using  the  classification

scheme  from  CICES  v.5.1,  (Haines-Young  and  Potschin  2018)).  Further

disaggregation within this category was not attempted given the strong perceptual nature

of these services and the passive nature of data collection that does not include users'

perceived benefits or values.

Regression  models  applied  at the  global  scale  of a  study area, such  as generalised

linear models (GLMs), summarise the average relationship between variables of interest

and social media metrics. Examples include travel-cost estimations for tourism (Sinclair et

al.  2018)  and  analysis  of  USA  national  park  visitation (Sessions  et  al.  2016).  Local

regression uses geographic weighted regression (GWR) that allows relationships to vary

over space rather than calculating one single average relationship for the entire study

area  (Fotheringham  2020).  This  method  has  been  used  to  consider  varying  visitor

preferences  across  Europe (Tenerelli  et al.  2016)  and  tourism patterns  in  South-East

Asia (Kim et al. 2019). Maximum entropy (MaxEnt) modelling uses machine-learning and

presence records to predict areas of high suitability for a phenomenon of interest (Phillips

2017). MaxEnt has been used to predict potential cultural ecosystem service hotspots in

several case-studies, for  example, in Japan (Yoshimura  and  Hiura  2017),  Portugal (

Clemente  et  al.  2019)  and  Turkey (Arslan  and  Örücü  2021).  Finally,  the  InVEST

recreation model from the Natural Capital Project provides a self-contained tool to model

recreation and tourism services using ordinary least squares (OLS) regression (Sharp et

al. 2018) and has been used in  a  number of studies, such as a  restoration project in

China (Zhao et al. 2021) and spatial planning in Chile (Outeiro et al. 2015).

Few published studies consider more  than  one of the  modelling  approaches outlined

above  (exceptions  include Byczek  et  al.  (2018) who used  the  InVEST  model  to

triangulate  their  custom model  and Tenerelli  et al. (2016) who  first discounted  a  non-

spatial, global GLM in favour of a GWR). To our knowledge, no study has compared the

application of different social media-derived spatial models for the same case-study area.

Similarly, no such model of in-situ cultural ecosystem services, based on data from social

media, has  been  used  in  Ireland.  We  addressed  this  dual-knowledge  gap  by

deploying four modelling  approaches using  data  collected  from social  media  in  a

previously untested case study, County Galway, Ireland. The research questions were as

follows:

1. What  environmental  characteristics  are  correlated  with  social  media-derived

visitation  as  a  proxy  for  in-situ  cultural  ecosystem  service  flows  in Galway,

Ireland?

2. What are the main differences in output and useability between spatial  models

and  how  can  this  provide  information  for  future  cultural  ecosystem  service

asssessment?
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Model  selection  for  ecosystem  service  assessment  should  be  co-informed  by  data

availability, data-processing expertise, research questions and spatial extent of the area

of interest (Pettorelli et al. 2017, Meraj et al. 2021). We aim to provide a guide for future

cultural  ecosystem  assessment that  takes  into  account  these  dimensions  and that  is

relevant  for  researchers  and  practitioners  using  spatial  models  coupled  with social

media-derived data.

Methods

Study area

County Galway, Ireland, was selected as the study area because of its heterogeneous

landscape, socio-cultural  heritage  and  high visitor  numbers. In  2018, visitor  numbers

were estimated at 1 million domestic and 1.8 million international, contributing a total of

€800  million  in  revenue  (Cunningham  et  al.  2015,  Galway  County  Council  2021).

Located on the west coast of Ireland (53°19' N, -9°00' W) (Fig. 1), the county covers 6,150

km  with a population of 175,000 in 2011 (CSO 2011a). The scope of this study focused

on  spatial  trends  over  a  continuous,  semi-natural  landscape.  Therefore,  the  area  of

interest was restricted to exclude Galway City as an urban hotspot, Lough Corrib as an

inaccessible  expanse  of  freshwater  and  islands.  The  remaining  area  (5,850  km )

contains  a  diverse  landscape  of  natural  features  including  mountainous  areas,

grasslands, wetlands, forested areas and coastline. The region also contains areas of

biological  interest  such  as Connemara  National  Park,  19  Special  Protection  Areas

(SPAs) and 77 Special Areas of Conservation (SACs) (NPWS 2022). 

Social media data collection

Data  were  collected  from  the  Flickr  social  media  platform  using  the  statistical

programming language R v.4.1.2 (R Core Team 2021), the Flickr API and the R package

photosearcher  v.1.0 (Fox  et  al.  2020). Flickr  was  selected  because  of  its  sizeable

userbase estimated to have uploaded 5.67 billion photos between 2004 and 2016 (Ding

and Fan 2019), previous work that suggested the platform hosts a more diverse userbase

compared with other platforms (Oteros-Rozas et al. 2018) and its use in similar studies on

the topic (Wood et al. 2013, Tenerelli et al. 2016, Wood et al. 2020). Flickr has the benefit

of complementary  data access  policies that  permit  the  collection  and  use  of  data  for

academic research purposes (Fox et al. 2020). Photosearcher calls on the Flickr API to

retrieve  data based  on  user-provided  parameters. All  searches  were  conducted  in

Feburary 2022 and parameterised to retrieve photo records with GPS coordinates taken

between  1  January  2010  and  31  December  2019. This  time  range  was  selected  to

ensure a sufficiently large dataset for modelling purposes, to reflect the widespread use

and accuracy of GPS devices and to exclude the disruption of travel restrictions imposed

due to COVID-19 legislation in 2020. Two datasets were collected: a validation dataset

and  a  modelling  dataset. Firstly, popular  locations, based  on  official  national  tourism
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statistics with recorded visitor numbers from Fáilte Ireland (2019a), were used to validate

the  relationship  between  social  media  records  and  visitation. Validation  sites  were

selected, based  on  two  criteria: 1)  sites with  visitor  number esimates by the  national

tourism body for at least 4 years between 2010 and 2019 (Fáilte Ireland 2019a) and 2)

solely indoor sites (e.g. concert venues, indoor museums) identified using authors' expert

knowledge were removed as they were suspected to provide limited potential for in-situ

ecosystem  service  supply. This  process  produced  38  sites  (Suppl.  material  1).  The

second dataset was collected to model visitation across the area of interest. A vector file

defining  Galway was  used  to  retrieve  photo  records  and  the  output  was  cleaned  to

contain only photo ID, user ID, date taken and GPS coordinates. 

Photo-user-days calculation

The photo-user-days (PUD) metric developed by Wood et al. (2013) has been used as

an indicator for visitation, based on geotagged social media data in a number of studies (

Sonter et al. 2016, Lee et al. 2019, Wood et al. 2020). The PUD metric is defined as the

number of users who upload at least one photograph in a day, at a given area or location

and is designed to prevent the inflation of photo-counts based on extremely active users.

For the validation dataset, PUD values were calculated at the site level to match official

visitor statistics and provide an appropriate comparison to validate PUD as a proxy for

visitor  numbers (Fáilte  Ireland  2019a). The  relationship  between  visitor  numbers and

PUD  counts  was  checked  using  Pearson's  correlation  statistic  and  the  suitability  of

this test  checked  using  the  Shapiro-Wilk test  for  normality  (Crawley  2015). In  the

modelling dataset, PUD  values  were  calculated  per  2  km grid  square  as  users  may

choose  to  visit multiple  places in  a  single  day and  it was desirable  to  capture  these

multiple  visits.  GPS points  were  assigned  a  200  m buffer,  based  on  a  conservative

estimate  of technological  accuracy and  previous work that found  photos uploaded  in

Western Europe had a mean inaccuracy of 100 m (Zielstra and Hochmair 2013). GPS

points were overlayed with a 2 km  grid and assigned a grid ID based on spatial overlap.

A variable representing the combination of user ID, grid ID and date was constructed. The

final PUD dataset was created by randomly slicing this variable to give one data point per

unique  user  ID,  grid  ID  and  date  combination.  This  sampling  technique prevents the

inflation of data based on individuals contributing many photos from a single visit to one

grid cell in one day, but allows users to contribute to multiple cells per day.

Environmental variable selection and data sources

Environmental  variables  were  selected,  based  on  natural,  human  and  built  capital

attributes identified as factors contributing to cultural service flows (particularly recreation)

in  the  UN  System of Environmental-Economic  Accounting  framework  (United  Nations

2021) and previous studies using geotagged social media records (Tenerelli et al. 2016, 

Byczek et al. 2018, Tieskens et al. 2018, Chang  and  Olafsson  2022). Natural  capital

attributes included biophysical variables describing ecosystems at a given location linked

to  potential  ecosystem  service  supply,  built  capital  attributes  included  infrastructure

associated with the accessibility and attraction of a given place and human capital  was

2
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included using population density as a proxy for service demand (Table 1). While  this

does not capture the complexity of all factors linked to cultural service flows, this schema

was  designed  to  cover  the  variety  of  capital  stocks  identified  in  literature,  given  the

available data for the study area. Spatial data related to these variables were collected

from existing databases and clipped to  the area of interest. The raw spatial  data  were

saved and a second set of maps were created by calculating an indicator value per 2 km

grid cell using zonal statistics tools in ArcMap v.10.7.

Statistical modelling

Four modelling  exercises were  applied  in  this study: 1) global  regression  (using  both

presence and count data), 2) local  GWR (presence data), 3) MaxENT and 4) InVEST

(Table 2).

Global regression

A logistic GLM (model a) was computed in R using a binary response variable describing

the presence of PUD records per 2 km  grid cell according to the formula:

PUD presence ~ Environmental predictors, family = binomal (link = logit) (a)

The grid size was selected to ensure a sufficient proportion of cells contained presence

records and to capture the variation of environmental attributes. Model optimisation was

conducted using stepwise model selection to minimise the Akaike Information Criterion

(AIC). This is a standard model optimiser that balances performance and complexity to

identify  the  most  parsimonious  model  (Crawley  2015).  Multicollinearity  was  checked

using  variance  inflation  factors  (VIF).  Dispersion,  outliers  and  the  assumption  of

homoskedasticity were checked using the dHARMA package (Hartig and Lohse 2018).

The receiver operator curve (ROC) was used to assess model fit to the dataset. The area

under the curve statistic (AUC) quantifies this trait with values of 0.5 describing a model

that performs as well  as  a  random model  and  a  value  of 1  describing  a  model that

perfectly fits the data (Swets 1988, Yoshimura and Hiura 2017). 

The output of this global  model  summarised average trends for the  entire  region. We

hypothesised that these relationships may vary across the landscape due to local socio-

environmental context and accessibility. Model performance across spatial scales can be

assessed  by  testing  for  spatial  autocorrelation  of  the  residuals  (Fotheringham 2020, 

Comber et al. 2022). We checked for evidence of spatial autocorrelation using Moran’s I

correlograms  generated  in  the  pgirmess  package  (Giraudoux  et  al.  2022). This  test

assesses if model  performance (magnitude of residuals) is randomly dispersed across

the  area  of  interest  (Comber  et  al.  2022).  Evidence  of  spatial  autocorrelation was

detected  and,  therefore,  the  development  of  models  that  account  for  this  spatial

heterogeneity was recommended (Suppl. material  4). This was done in two ways: 1) a

spatially  autocorrelated  mixed-model  (SAM) that  models  global  relationships,  but

incorporates  a  spatial random  effect  and  2)  a  GWR  that  permits  locally  varying

relationships (see next section). The SAM model (model b) consisted of two components:

2
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environmental predictor fixed effects and a spatial random effect, based on latitude and

longitude, computed  using  the  spaMM package  (Rousset and  Ferdy  2014),  with  the

following formula.

PUD presence ~ Environmental predictors + Matern(1|Lat + Long), family = binomal (link

= logit) (b)

This  procedure  is  a  recommended approach  for  modelling  spatial  data  in

ecology where spatial  autocorrelation  is  detected  (Comber  et al. 2022). Model  checks

were computed as outlined in the previous section.

The  PUD  count  per  2  km  grid  cell  was  used  as  the  response  variable  in  a  third

model. Count data are typically modelled using a poisson GLM (O'Hara and Kotze 2010).

Upon inspection, the global poisson model was not appropriate due to overdispersion,

homoskedasticity and spatial autocorrelation of residuals. Instead, a SAM (model c) was

deployed in the same procedure as above, according to the formula:

PUD Count ~ Environmental predictors + Matern(1|Lat + Long), family = poisson (link =

log) (c)

Local regression - Geographic weighted regression

A logistic GWR model was conducted to test for spatially varying relationships using the

presence of PUD. GWR computes repeated regression analyses across the landscape

and  applies  a  distance-based  weighting  function  so  that  data  points  closer  to  the

regression point are weighted more compared to distant data points (see Fotheringham

et al. (2003) for an in-depth methodological  text). The maximum distance around each

regression point to include a data point is referred to as the bandwidth and the shape of

the weighting function is referred to as the kernel (Fotheringham et al. 2003). The model

output supplies a regression coefficient and t-value for each predictor variable at each

regression  point.  Changes  in  sign,  magnitude  and  significance  for  any  relationships

between  environmental  attributes  and  PUD  occurrence  can  then  be  mapped  and

inspected. The  GWR analysis was computed  in MGWR v.4.3  software  using  the  fixed

kernel  setting  and  optimised  using  the  CV  method  (Oshan  et  al.  2019).  Local-level

independence was checked using local VIF values. As with the previous models, Moran’s

I correlogram and the ROC were plotted and AUC value calculated. Coefficient surfaces

for each environmental predictor were mapped using the tmap package (Tennekes 2018

). 

A  GWR  model using  the  PUD  count  variable  was  trialled,  but  ultimately  deemed

inappropriate. As a  global poisson GLM was not supported due to  overdispersion and

heteroskedasticity concerns, it was surmised that a GWR using a poisson distribution was

not recommended as this simply runs a series of repeated poisson models with the same

variables,  just  different  weighting  schemes. More  sophisticated  model  structures  to

address  this  (e.g.  negative  binomial,  quasipoisson) are  not  currently  available  in

combination with GWR techniques and lack consensus in the academic community and
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so  were  not pursued  further  by  us.  As  more  sophisticated  model  structures  become

available in the future, these could be considered.

MaxEnt model

MaxEnt was the third model type tested. This model predicts areas of high probability for

visitation, based  on  characteristics  associated  with  sampled  PUD occurrence. MaxEnt

differs from the regression models outlined above because it adopts a “presence-only”

approach. Sampling social  media  records cannot prove the absence of visitation and,

therefore, a  value  of 0  PUD does not reflect a  true  and  tested  absence  of visitation  (

Phillips  2017).  Instead,  Maxent  uses  high-resolution  environmental  data  to  compare

areas  of  observed  presence  records  to  a  set  of  background  pixels  using  machine-

learning  software  to  model  the  probability  of  PUD  occurrence.  All  environmental

predictors were converted into 100 m raster format using spatial statistics tools in ArcMap

v.10.7  because  MaxEnt  only  accepts  data  of  identifcal  resolution  and  extent.  The

objective of this exercise was to predict the suitability of visitation and so the PUD dataset

was randomly partitioned into 75% training data and 25% test data. We ran the model

100  times using  a  bootstrap  procedure  to  produce  an  average  map  of suitability and

jackknife  analysis was used to  compare model  performance (Phillips 2017). Jackknife

analysis runs two models for each environmental  predictor: the first includes only that

predictor  in  isolation  and  the  second  includes  all  variables,  except  that  predictor.

Differences in model performance compared to the maximal model can identify predictors

of greater contribution and predictive influence. 

InVEST model

The final  model  considered was the  InVEST Visitation, Recreation  and Tourism v.3.10

ecosystem service model (Sharp et al. 2018). The InVEST model uses an archive of Flickr

data  from  2005-2017  to  calculate  annual  PUD  values and  the  user  supplies  spatial

environmental  predictor  data. The  model  performs spatial  analysis  to  create  indicator

values "in-house”, based on a limited number of pre-set options. It can also compute an

OLS regression using those generated indicators, user specified cell size and retrieved

PUD archives. We ran the InVEST model using the OLS regression option at a 2 km  grid

size  from 2010-2017  and  supplied  the  shapefiles  of  environmental  attributes  (Suppl.

material 2). 

Results

Validation of PUD and visitation

All  38  validation  sites  returned PUD  counts  that  were  plotted  against  official  visitor

numbers  reported by  Fáilte  Ireland (Fig.  2) (Fáilte  Ireland  2019a).  The  Pearson

correlation  coefficient  was  0.7  indicating  a  positive  correlation  and  a  significant
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relationship was observed using OLS regression (p < 0.001 at the 0.05 level, R = 0.3).

This result supports the use of social media-derived PUD as a visitation proxy in Ireland.

Social media data and PUD calculation 

A total of 25,170 geotagged photographic records were retrieved (Suppl. material 3) and

converted into 6,762 PUDs (Fig. 3a-b). The number of PUD per grid cell ranged from 0 to

413 with a mean of 5.65 and standard deviation of 20.8 (Fig. 3c). Spatial analysis using

the  Getis-Ord  Gi*  tool  in  ArcMap  v.10.7  showed  significant  clustering  of  PUD,  and

therefore, a non-random distribution (Fig. 3d). Hot spots were found in western, coastal

areas and  the  area  south-east  of  Galway  City.  Cold  spots  of  low  PUD  count  were

concentrated in the east of the region.

Global regression

Logistic regression - PUD presence

The  non-spatial,  logistic  GLM  model of  PUD  presence contained  11  environmental

variables (Table 3a). Land-cover type variables produced collinearity concerns (VIF > 5),

while protected  status,  town  distance  and  Shanon's  diversity  of  land cover were  not

significant. These variables were not included in  the final model. VIF values for the 11

remaining predictors were < 5 and, therefore, satisfied the assumption of independence (

Guisan  and  Zimmermann  2000).  Distance  to  the  coast  and  elevation  were  found  to

significantly decrease the likelihood of PUD occurrence, while the remaining variables

were  found  to  increase  the  likelihood  of PUD occurrence. The AUC value  was 0.839

indicating a moderate fit to the dataset (Fig. 4). The Moran’s I correlogram of the model

residuals showed statistically significant values at distance classes < 25 km, supporting

evidence of spatial autocorrelation (Suppl. material 4). 

A logistic SAM was constructed given the spatial autocorrelation detected in the logistic

GLM (Table 3b). This model identified the same variables as significantly correlated with

PUD presence, although coefficients and standard errors varied marginally. The logistic

SAM displayed  a  lower  AIC  value  compared  to  the  non-spatial  global  model  (1518

compared to 1629) and so, this was identified as the more parsimonious model for PUD

occurrence  at  the  global  scale. Evidence  of  spatial  autocorrelation  was  not

detected (Suppl. material 4).

Poisson regression - PUD count

Visitor intensity was modelled using a SAM of PUD counts (Table 3c). Results showed

that all  coefficients retained the same direction (sign) as the presence model, although

population was not significant at the 95% level. This suggests similar characteristics are

associated  with  places  most likely  for  Flickr  contributors  to  visit  and  places  with  the

highest visitation rates, with the exception that places with high population density are

more  likely  to  have  a  PUD  >  0,  but  not  necessarily  high  total  PUD  counts.  Model
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performance was inspected by plotting observed PUD counts and model predicted PUD

counts (Fig. 5). The results showed a significant positive correlation (slope = 0.84, p <

0.001) and a coeficient of determination (R ) value of 0.5. The PUD variable is skewed

with  many zero  values and  fewer  high  values. This  is  reflected  in  the  model  fit  with

greater statistical noise at lower PUD values. Evidence of spatial autocorrelation was not

detected (Suppl. material 4).

Geographic weighted logistic regression – PUD presence

The global  logistic model  displayed evidence of spatial  autocorrelation that may mask

local relationships. GWR was used to investigate this and the resulting coefficients were

mapped to show variation in magnitude, direction and significance (Fig. 6). Distance to

the  coast  was  found  to  produce  collinearity  problems  and  dropped  from  this

model. Monte  Carlo  simulation  produced  a  significiant  result (p  =  0)  for  all

predictors, further  supporting  the  presence  of  spatially-varying  relationships. Several

variables showed changes in significance levels across the area of interest, most notably

town  distance  that  showed  a  negative  coefficient  in  eastern  areas  and  a  positive

coefficient in the west. In other words, areas close to towns in the east of the region are

more likely to  have a PUD record, but remote areas far from towns are more likely to

record a PUD in the west. The presence of recreational sites was found to be significant

in  three hotspot areas across the landscape. The ROC for the  GWR local  model  was

plotted with an AUC of 0.909 (Fig. 4). Compared to the non-spatial global logistic model,

the GWR local model showed an improved model fit as indicated by its AUC value (0.909

compared to 0.839) and AIC value (1469 compared to 1629). 

MaxEnt model

The MaxEnt model used 100 m rasters of environmental predictors and PUD occurrence

coordinates to predict areas of visitation suitability (Fig. 7). The mean AUC value was 0.8

indicating  an  improved  discrimination  compared  to  a  random  prediction  model.  The

results show hot spots of high suitability for PUD visits in clusters in the east of the county,

along road networks and coastal areas and surrounding Galway City. Dark blue areas

indicate  low  likelihood  of suitability  for  PUD  occurrence  and  span  the  predominantly

agricultural  areas in  the east and wetlands with  poor connectivity and low population.

Variable response curves are included in Suppl. material 5.

MaxEnt’s jackknife analysis, based on average AUC values, is shown in Fig. 8. Distance

to  the  coast,  elevation,  presence  of  major  roads  and  presence  of  recreational  sites

contributed  the  most information  to  the  model  in  isolation  (shown  in  dark blue  bars).

Similarly,  the  model  performance  showed  the  greatest decrease  with  the  removal  of

elevation and major roads (shown by the light blue bars) suggesting that these variables

contain information that is not captured by other variables. The variables with the lowest

contribution  to  the  model include geological  heritage  sites, river length  and  slope  that

suggests they have limited predictive power in isolation.
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InVEST recreation model

The output of the InVEST recreation model reports an OLS regression of log transformed

annual  PUD  values  (retrieved  from  an  archived  dataset)  on  environmental

predictors (Table 4). Direct statistical comparison to other models is not appropriate given

differing  input  data;  however,  we  provide  some  observations regarding  outputs  and

computation. The InVEST model uses log annual PUD as the response variable that is

characterised  by low  values and  produces correspondingly  small  absolute  coefficient

values. This model output included land-cover variables manually dropped from previous

models  due  to  collinearity  concerns.  The  InVEST  tool  does  not  compute  or  report

collinearity check. Other differences compared to previous analyses include river length

and geological  heritage being insignificant. All  land-cover variables are reported with a

negative sign suggesting that any cell dominated by one land-cover type has fewer PUD

counts. This is consistent with a positive and significant coefficient for habitat diversity. 

Discussion

This  study  investigated  potential  in-situ  cultural  ecosystem  service  flows across  a

previously  untested context using  data  from social  media  as a  visitation  metric and  a

spectrum of spatial models. The following discussion is split into three major themes: (1)

PUD as a proxy for potential in-situ cultural ecosystem service flows in County Galway,

(2) spatial  model selection and use and (3) general  comments about the use of social

media data.

Cultural ecosystem service assessment using PUD in County Galway

This is the first study to use a social media-derived PUD indicator in the Irish context and

the positive correlation between PUD and official  visitor counts is consistent with other

validation studies (Sonter et al. 2016, Fisher et al. 2019, Kim et al. 2019). Application of

the  PUD metric  successfully  revealed global  trends, local  relationships and  predictive

suitability  maps.  These  results  demonstrate  the  applicability  of  social  media-derived

analysis for providing  spatially explicit information  for ecosystem service  assessments.

This information is useful for environmental management by providing a mechanism for

decision-makers to account for these services and corresponding benefits in policy and

planning. For example, this information could contribute to designing future tourism plans

and local development strategies given the projected increase in visitor numbers to the

area  and  understanding  how  and  where  those  people  interact  with  nature  (Galway

County Council 2021). In the long-term, spatially explicit assessment of the contributions

ecosystems make to peoples' lives can support the preservation of these contributions for

future generations (Díaz et al. 2018, Dasgupta 2021).

A core set of environmental attributes representing a blend of natural, human and built

capital  were  identified  as  correlated  with  PUD across  all  models:  coastal  distance,
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presence of major roads, population density, habitat diversity, elevation and presence of

recreational  sites.  The  finding  that  a  blend  of  capital  stocks  was  correlated  with

PUD mirrors results in other contexts (Tenerelli et al. 2016, Byczek et al. 2018, Tieskens

et al. 2018), and demonstrates that natural and biophysical characteristics, socio-cultural

context and  accessibility  are  all  implicated  in  the  potential  flow  of cultural  ecosystem

services (Byczek  et  al.  2018).  This  is  aligned  with  the  natural  capital  approach  that

considers the underpinning stocks that give rise to ecosystem services in terms of their

unique  combination, configuration  and  condition  at a  given  place (Chan  et al. 2012a, 

Jones et al. 2016, Costanza et al. 2017, Mace 2019). Another shared result between all

models used was that protected status was not correlated with the PUD indicator, unlike

in  other  studies,  for  example,  USA (Figueroa-Alfaro  and  Tang  2017)  and  Japan (

Yoshimura and Hiura  2017), which  may suggest that protected areas serve  a  different

role  in  people-environment relationships  compared  to  other  contexts. The  majority  of

protected areas in Co. Galway fall under SAC and SPA designations that are targeted at

nature  conservation  under  EU-wide  nature  directives (NPWS  2022).  This  may  be  a

reason why the protected status does not appear to be correlated with in-person visitation

in  Co.  Galway,  as  the  primary  purpose  for  their  designation lies  in  biodiversity

conservation  rather  than  providing  a  societal  utility. It  may be  that characteristics  that

allow  for  sites  of  high  biodiversity  value prevent  high  visitor  numbers,  for  example,

inaccessibility  and  lack  of  man-made  infrastructure  or sites  unsuitable  for  such

development. 

The  global,  non-spatial  logistic  model  was  found  to  display  spatial  autocorrelation

(violating the assumption of independence) and a higher AIC value compared to both

spatial model alternatives (SAM and GWR). Therefore, models that account for the spatial

nature of geo-tagged social media data should be used in such cases. Spatially varying

local  relationships  were  found  using  GWR. This  is  consistent with  studies that found

evidence  of  local  relationships  when  modelling  cultural  ecosystem  service  flows (

Tenerelli et al. 2016, Schirpke et al. 2018, Kim et al. 2019). In the most extreme case of

town distance, the relationship was reversed across the study area with  remote areas

correlated with visitation in the west and places close to towns correlated with visitation in

the  east. By  definition,  this  phenomenon  was  obscured  by  models  that  produce  one

single  relationship  for  the  entire  region: in  both  the  global  logistic regression  and  the

SAM town, distance was not significant, while  the InVEST model  suggested a  positive

relationship  overall. Previous European  studies identified  natural  areas close  to  urban

sites as potential hotspots for providing cultural ecosystem services (Ridding et al. 2018, 

Long et al. 2020) and, in Galway, this appears to be the case for some areas, but not

everywhere. The rugged, mountainous and wetland landscapes in western areas may be

perceived as more attractive to visit because of their remoteness and attract visitors away

from urban areas, whereas the predominantly agricultural landscapes surrounding towns

in  the  east may not.  In  less  pronounced  examples  of local-level  relationships, some

variables were found to be significant, but only in limited areas rather than across the

entire  region, for example, habitat diversity, recreational  sites and geological  heritage.

The identification of local relationships using GWR shows that caution should be applied
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when  downscaling  global  average  trends  (non-spatial  GLM,  SAM,  InVEST)  to  local

areas (Fotheringham 2020, Comber et al. 2022).

The  MaxEnt model was the  only  method used  for  prediction  due  to  its  presence-only

approach (as opposed  to  testing  for  correlations in  GWR and  SAM models). Jackknife

analysis showed that elevation, coastal  distance, recreational  sites and town distance

were the  variables of greatest predictive  influence in  the  model. Other variables were

found to have limited contributions to model prediction, such as river length, water cover

and geological diversity, despite showing significant correlations in regression analysis.

This result can support the prioritisation of data collection when designing management

interventions as some variables appear to be more informative. Results in this case-study

suggest rural  areas, close  to  the  coast, of moderate  elevation  and  with  a  major road

should  be  prioritised  for  targeted  management  interventions.  These  areas  have  the

potential  to  experience high  visitor volumes through in-situ  cultural  ecosystem service

supply  and  the  associated  anthropogenic  disturbance could  contribute  to  negative

ecological consequences and compromise long-term service flows.

The InVEST model presented some differences compared to the other models, such as

the inclusion of land-cover variables and different significance levels for water cover and

geological diversity. This is not unexpected given that InVEST is premised on a different

response variable dataset (archived Flickr database), but it does provide a comparator to

triangulate with other methods. Overall, the variables of greatest significance in user-led

regression techniques (coast distance, elevation, recreational  sites, major roads) were

also  identified  as  significant  using  InVEST  with  less  intensive  processing  of  data

required. Stepwise model optimisation and diagnostics are not provided by the default

InVEST tool  and so any changes must be  led  by the  user manually inspecting  model

outputs, making desired changes and re-running the model in its entirety, which can be

time-consuming.  These  characteristics  may  be  limitations  to  the  InVEST  model

depending on the research context and similar remarks have been stated in literature (

Byczek et al. 2018).

This is the first social  media-based spatial  modelling study in  the Irish context and so

comparison is limited. Previous research used a stated-preference methodology to elicit

aesthetic preferences of rural landscapes in Ireland, based on a nationally-representative

survey of 430 individuals (O'Donoghue et al. 2020). The results showed some overlap

between highly valued aesthetic characteristics and characteristics correlated  with  the

social media-derived PUD variable, for example, freshwater (lakes, ponds, rivers), marine

areas and beaches, heritage monuments and geological features (mountains and cliffs).

On the other hand, built attributes (roads, fences, buildings) were assigned a low value in

the stated preference study, but urban areas and roads were found to be correlated with

the PUD  indicator.  These  differences  may  be  due  to  the  different  phenomena

investigated  (visitation  versus  aesthetics),  the  different  cohorts  sampled, differences

between revealed behaviour and stated preferences and the reality that not all areas in

the  landscape  may  be  equally  accessible  and, therefore, visitor  occurrence  may  not

reflect  a  true  “choice”  amongst  all  possible  options.  This  emphasises  the  value  of
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assembling  a  diverse  suite  of tools to  investigate  cultural  ecosystem services and  the

contributions they make to people’s lives (Zhang et al. 2020). 

Model selection and useability

The results demonstrate the applicability of social media to developing spatial models of

visitation. The differences in model outputs identified have the potential to create differing

interpretations when a single approach is deployed in isolation. Therefore, we find merit

in  investigating  multiple  modelling  tools—even  if, ultimately,  one  is  favoured  for  final

reporting. While this study presented four workflows for clarity and comprehension, there

is flexibility to customise these approaches to user needs beyond what is presented here.

Some  observations  regarding  data  availability,  data  processing, expertise,  research

question and spatial extent required are presented below to provide information for future

cultural ecosystem service assessment using these methodologies. 

Area of interest and scale

Data  from  social  media  are  widely  applicable,  but  their  geographic  coverage  is

unequal. The  InVEST  model  is  not  suited  for  use  in  data-scarce regions  as  it

recommends  at  least  50%  of  cells  contain  PUD  records (Sharp  et  al.  2018).  Data

availability also has a role when designing global and local regression analysis. In areas

of limited  data  coverage, the  resolution  of analysis  (cell  size)  may be  constrained  to

ensure sufficient coverage and variation in the response variable. Both global regression

and GWR can adopt model families to account for non-normal response variables (count

data, presence data); however, GWR lacks consensus regarding more complex model

types and optimisation that limits its application, for example, the negative binomial GLM

family,  is  currently  unsupported  and  multiscale  (varying  bandwidth)  GWR  cannot  be

combined  with  GLM  model  families (Oshan  et  al.  2019).  MaxEnt’s  presence-only

approach lends itself most easily to data-scarce regions as it was intended for use on

species distribution data that are often characterised by a low number of observations.

Model  resolution  should  also  consider  the  size,  the  heterogeneity  of  environmental

attributes and the suspected behaviour of the sampled population of the area of interest.

For  large  areas  with  suspected  variation  in  local  socio-environmental  context,  the

presence of local relationships may be hypothesised from study initiation (Tenerelli et al.

2016), whereas, for more constrained areas with a shared socio-environmental context,

for  example,  visitation  within  a  self-contained  national  park (Tenkanen  et  al.  2017, 

Sinclair et al. 2020), this may not be the case. The case-study of County Galway used a 2

km  resolution  to  create  the  PUD  indicator  and  calculate  environmental  indicators  to

account for both data coverage and local knowledge that people engage in several visits

to  distinct  locations  within  single  daytrips.  Spatial  autocorrelation  of  model  residuals

should  be  inspected  regardless of scale. In  this case, Moran’s I statistic  was used  to

assess  model  performance  by  testing  model  residuals  to  see  if  they  behave  in  a

clustered, dispersed or random pattern. If spatial autocorrelation is detected, alternative

models that account for this should be considered, such as a mixed-model using spatial
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random effects (SAM) or a GWR analysis (Comber et al. 2022). This was the case for the

non-spatial, global, logistic GLM reported in this study that was ultimately discounted due

to evidence of spatial autocorrelation. The selection between the logistic SAM and GWR

models can then be determined, based on the research question, context and statistical

support for  spatially  varying  relationships. Without these  checks, there  is  a  danger of

landing  on  a  model  that  performs  differently  in  different  places,  but  is  poorly

representative everywhere (Fotheringham 2020).

Variable selection and indicator calculation

The available environmental data also determine grid size and mapping outputs for all

four  model  workflows  discussed.  Variable  selection  should  be  grounded  in  the

hypothesis for  the  phenomenon  of interest and  data  may be  gathered  from available

regional  or  national  data  sources,  on-the-ground  sampling  or  remote  sensing.

Where appropriate data are available, indicator calculation is limited only by the users’

expertise with data processing with a range of basic spatial  statistics tools available in

most GIS software, for  example, proximity, presence, count, density, mean, min, max

values. These indicators should be designed so that they vary across the landscape in a

meaningful way, based on the cell resolution selected and this necessitates an interplay

between indicator design and model resolution. For example, the use of “river presence”

was not appropriate  for modelling  Co. Galway because the  landscape contains many

river features and, at the 2 km  scale, almost all  cells contained an identical value that

was not meaningful.  Instead, river  length  was selected  as  the  indicator. When  using

GWR, this  should  also  hold  true  at the  bandwidth  scale  to  ensure  sufficient variation

around each regression point, in addition to local multicollinearity checks (Fotheringham

et  al.  2003).  The  use  of  GWR  may  also  preclude  the  use  of  some  proximity-based

indicators  that  vary  monotonically  across  the  landscape  and  introduce  collinearity

problems, for example, coastal distance in the case of Co. Galway (Comber et al. 2022).

The  balance  between  resolution  and  indicator  selection  was  also  apparent  when

creating raster files for use in MaxEnt. Input data to MaxENT must be of identical extent

and resolution in raster format that matches the desired output resolution. This required

adjusting indicator file formats (indicator values themselves were not recalculated in this

process).  A  second  adjustment  was  made  to  change  some  indicators  that

were informative at the 2 km resolution, but less informative at the 100 m resolution. For

example,  at  the  larger  cell  size,  binary  presence  indicators  (presence  of  geological

heritage, presence of recreational sites) captured the effect of a feature throughout the

surrounding  area, whereas, when  using  smaller  cell  sizes, this  landscape  effect was

lost. Instead, a  proximity  or  density-based  indicator  may  be  more  appropriate  at  fine

resolution where the impact of a feature is hypothesised to extend beyond the cell size.

Careful consideration is required to understand these relicts of model specification and

may require a back-and-forth approach to identify the most appropriate indicators for a

given  resolution.  These  considerations  are  significantly  constrained  when  using  the

InVEST model  which  only  contains  seven  pre-set options  to  the  user  for  calculating
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environmental indicators (two raster, five vector data types) that stymies customisation (

Byczek et al. 2018).

Computational and resource costs and savings

Beyond  statistical  details,  there  are  practical  considerations  that  may  determine  the

analysis  of  data  from  social  media  in  ecosystem  service  assessments, such as  the

availability of computational resources, time and expertise. The InVEST recreation model

is designed to be accessible to any user who may be unfamiliar with advanced coding,

statistics or GIS by providing a self-contained, comprehensive interface and interpretable

outputs (Sharp et al. 2018). Running the model  requires an internet connection, but is

otherwise  computationally  light.  It  also  benefits  from  available  online  tutorials  and

documentation provided by the Natural Capital Project to guide users (Sharp et al. 2018).

These advantages must be balanced against some drawbacks, such as the use of an

archived  dataset of only  Flickr-based  records that may become  outdated  (2005-2017

currently) and limited user-customisation of model structure and variable calculation.

The MaxEnt model is supported through a self-contained programme (and compatible R

package)  with  introductory  online  resources  available  (Phillips  2017). The  user  must

supply a  suitable  set of raster datafiles of identical  extent and resolution that requires

some experience working with spatial datasets to prepare. The model then computes a

form of logistic regression using machine-learning to  optimise model  gain. Computing

this potentially complex model structure from scratch would require advanced knowledge

unavailable  to  many potential  users and, therefore, the  MaxEnt tool  makes otherwise

inaccessible  statistical  analyses possible.  The  default  output  includes  a  heatmap  of

predicted  suitability  that  is  intuitive;  however,  advanced  options  (jackknife  analysis,

scenario comparison, bootstrap replications) require a greater depth of interpretation and

expertise.  The  model  may  also  take  a  significant  length  of  time  to  compute  when

including replication. The MaxEnt model was often deployed amongst studies that clearly

defined cultural  ecosystem  services  within the  core  research  question(s) (examples

included Richards  and  Friess  (2015),  Yoshimura  and  Hiura  (2017),  Clemente  et  al.

(2019), Long et al. (2020), Arslan and Örücü (2021)), possibly due to the model's origin in

biodiversity mapping and shared ecological disciplinary overlap.

The use of user-defined global regression techniques, for example, GLMs and SAMs, is

the most customisable approach detailed in this study. The user should follow the usual

statistical  checks  (outliers,  dispersion,  heteroskedasticity),  as  well  as  spatial

autocorrelation  checks. The  user  must prepare  a  data  table  containing  the  response

variable and environmental indicator for each cell in the landscape, which often requires

data  wrangling,  cleaning  and  manipulation  using  spatial  statistics.  Highly-advanced

model  structures  may be  theoretically  possible, but inaccessible  due  to  the  expertise

required to define, run and interpret them. In some cases, the desired model may not yet

be  computationally  possible.  For  example,  multiscale  GWR  is  currently  limited  to

gaussian distributions, while GWR using poisson and binomial model families can only

use fixed bandwidths. GWR can be computed in a number of ways including a number of
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R  packages,  Python  and  the  stand-alone  MGWR  tool,  although  their  respective

optimising  algorithms vary,  leading  to  different  outputs.  GWR  model  runs  can  be

computationally intensive  and take  long periods of time depending  on  the  size  of the

dataset,  optimisation  criteria  and  use  of  Monte  Carlo  simulation  (Oshan  et  al.  2019, 

Comber et al. 2022).

These considerations (summarised in Table 5) have implications for the time, resources

and expertise required to conduct analysis using geo-tagged social media data. In some

cases, more than one model is required necessitating a to-and-fro procedure. This level

of consideration is required from project inception to create the most informative model

for  a  given  phenomenon  of  interest.  The  alternative  is  the  creation  of  knowledge

premised on the shaky foundation of what is most familiar and accessible, rather than

what is most appropriate.

Social media data use and limitations

The  focus  of this  study  was  the  application  of social  media-derived  data  in  different

spatial  models, not social  media-derived data itself. The caveats of social  media  as a

data  source  have been  well-described  in  literature, but its  use  continues to  increase,

especially  in  studies  related  to cultural  ecosystem  services (Cheng  et  al.  2019, 

Ghermandi  and Sinclair 2019, Zhang et al. 2020). We make some general  comments

here to contextualise the use of social media data and, despite these caveats, the results

presented  remain  relevant  as  the  first  such  application  in  Ireland and  they  provide

transferable insight regarding spatial model selection for other contexts.

Potential inaccuracy in the geo-tagged coordinates was accounted for by using a 200 m

buffer when calculating the PUD variable, given the suspected technological accuracy in

northern Europe (Zielstra and Hochmair 2013, Tieskens et al. 2018). MaxENT requires

precise GPS points and InVEST assumes GPS-tags are accurate. If there are suspected

errors in GPS accuracy, a user can choose to manually validate GPS tags by inspecting

photographic content (although this is costly for large samples) (Walden-Schreiner et al.

2018) or select a resolution coarse enough to render the suspected error marginal.

Social  media user-groups are a self-selecting, unrepresentative sample of the general

population and so data collected carries with it the bias of the userbase (Ghermandi and

Sinclair  2019,  Sinclair  et  al.  2020).  Typically,  this  bias  skews  towards  wealthier

individuals, younger  people  and  contains  a  gender-bias depending  on  the  platform (

Zhang  et al. 2020), although  some  studies suggest Flickr  is  more  diverse  than  other

leading  platforms  (Fox  et  al.  2020).  We  acknowledge  that  the  results  of  this  study

represent a self-selecting group of Flickr contributors and do not intend to generalise the

overall  population  interacting  with  the  landscape  of  County  Galway.  While  skewed

towards a specific userbase, the results of this pilot study provide a first-look into social

media  data  applications in  Ireland and future  work can complement these findings by

deploying  a  range  of social  media  platforms and  other data  sources (visitor statistics,

choice-based experiments, participatory data collection) (Wood et al. 2020).
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The  social  media  content used  in  this study was not screened  or filtered  beyond  the

removal of areas outside the area of interest. The volume of data collected (25,000 data

points contributed by 1,866 users) and the widespread distribution of those points across

the  landscape  suggest  that  the  sampled  data  contain a  diversity  of  information  and

were successfully applied as per other similar studies exploring visitation (Sonter et al.

2016,  Sinclair  et  al.  2020).  We  emphasise  that  this  study  considered  in-situ  cultural

ecosystem services broadly without disaggregating  specific  services or  assuming  user

intentions and, therefore, analysis is based on the location of the photographer, not the

content captured in the photograph itself (which would require inspection) (Tenerelli et al.

2016, Langemeyer et al. 2018). There is also an assumption that the physical presence

of  an  individual  in  an  ecosytem  represents  a  potential  cultural  ecosystem  service

flow. Investigators may choose  to  filter  content to  varying  degrees depending  on  their

available  resources,  data  needs  and  research  questions  (e.g.  based  on  sentiment,

content, contributor or machine-learning) (Langemeyer et al. 2018, Oteros-Rozas et al.

2018, Lee et al. 2019, Fox et al. 2021). Even with these efforts, it is not possible to know

with certainty how the intent and values behind the location content was created without

the input of the individual  contributor. We also do not suggest that the findings of this

study reveal true “preferences” as this implies a degree of choice amongst all options that

was not tested in  this study and there is an inherent bias towards more “picturesque”

places as an artefact of using a photo-sharing platform (Clemente et al. 2019). All social

media-based studies must grapple with these problems and, despite these caveats, the

popularity and breadth of social  media applications continues to grow (Ghermandi and

Sinclair 2019, Zhang et al. 2020).

Conclusions

Spatial  models applied to  data  from social  media  revealed  a  blend  of environmental

characteristics  related  to  visitation  and  potential  in-situ  cultural  ecosystem  service

flows across  County  Galway,  Ireland.  These  characteristics included coastal  distance,

elevation, major roads, recreational sites, urban distance and habitat diversity. Famously,

all  models are  imperfect; but by discussing  the  workflow  for each  approach, we  have

articulated where and why different models may be useful. We hope that this exercise,

zooming in on the application of spatial  models using social  media data to investigate

cultural  ecosystem  services,  can  serve  as  a  useful  signpost  for  researchers  and

practitioners involved in ecosystem service assessments and natural capital accounting.

Model selection considerations in such exercises should capture the context of the area

of interest, computational demands, data availability and structure and research scope.

Furthermore, for transparency and clarity, we encourage all researchers and practitioners

to explain and justify their choice of model and variables in detail. The results presented

are especially pertinent given the  growing volume of available  data  from social  media

and the need for spatially-explicit models for natural capital  accounting and ecosystem

service assessments.
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Figure 1. 

Case-study area of  interest,  County Galway and its location on the west coast  of  Ireland.

Areas excluded from analysis (Galway City and Lough Corrib) are highlighted.
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Figure 2. 

a)  Location of 38 tourist sites, b)  scatterplot showing significant positive correlation between

official visitor counts and photo-user-days visitation metric (log scale).
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Figure 3. 

a)  GPS points of  25,170 photographs retrieved,  b)  GPS points of  6,762 photo-user-days

(PUD), c)  aggregation of PUD points into 2 km grid resolution (log scale), d)  Getis-Ord Gi*

statistic hot and cold spots.
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Figure 4. 

ROC plots for global logistic regression (black) and local GWR logistic regression (blue), based

on presence of PUD at 2 km  pixel size.2

30

https://arpha.pensoft.net/zoomed_fig/8053129
https://arpha.pensoft.net/zoomed_fig/8053129
https://arpha.pensoft.net/zoomed_fig/8053129


Figure 5. 

Observed photo-user-day (PUD) counts plotted against modelled PUD, based on SAM output

(log scale), with an R  value of 0.5.2
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Figure 6. 

GWR coefficient surfaces for 12 environmental predictor variables used to model photo-user-

day occurrence.  Only significant  coefficients at  the  95% level  are  shaded.  Warm  colours

indicate a positive coefficient, while cold colours indicate a negative coefficient. 
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Figure 7. 

Average  suitability for  Flickr-derived  photo-user-day occurrence (100  replicates)  at  100  m

resolution generated by the maximum entropy model. 
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Figure 8. 

Jackknife tests for  environmental predictor  contributions to MaxEnt prediction models. Dark

blue shows models with the variable in isolation, light blue shows the full model minus the

variable and red shows maximal model for comparison.
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Predictor Capital Indicator Data source and format

Elevation Natural Average elevation Copernicus remote sensing DEM. 25 m

raster data (EEA 2017).

Slope Natural Average slope Copernicus remote sensing DEM. 25 m

raster data (EEA 2017).

Rivers Natural Length of river Environmental Protection Agency. Vector

data of river bodies (EPA 2012).

Freshwater

cover

Natural Area of freshwater (lakes, ponds, rivers) Water framework directive. Vector data of

lake segments (EPA 2012).

Coastline Natural Distance to coastline Ordinance Survey Ireland. Land mask of

Ireland 250 k vector file (OSi 2020).

Habitat

diversity

Natural Number of CORINE classification types CORINE land-cover map 2012. Raster of

land-cover types at 100 m (EEA 2019).

Land cover  Natural Area of four land-cover types (agriculture,

wetlands, urban and forestry and natural

areas).

CORINE land-cover map 2012. Raster of

land-cover types at 100 m (EEA 2019).

Land-cover

diversity

Natural Shannon’s diversity index CORINE land-cover map 2012. Raster of

land-cover types at 100 m (EEA 2019).

Geological

heritage

Natural Presence of designated geological heritage Geological Survey Ireland. Vector data of

recommended heritage sites (GSI 2020).

Protected

status

Natural Area covered under protected status National Parks and Wildlife Service.

Vector of protected areas. (NPWS 2022).

Town distance Built Distance to nearest town CSO Census 2011. Boundaries of

designated towns and cities (vector) (

CSO 2011c).

Population Human Population density CSO Census 2011. Grid of population

density at 1 km  (CSO 2011b).

Major Roads Built Presence of a major road Ordinance Survey Ireland. National road

network vector file. (OSi 2020).

Path density Built Density of path length Open street map roads database (vector)

(OSM 2021).

Amenity and

recreation sites

Built Presence of a recreational site (examples

include bike rental, sports trails, boating,

angling, golf courses)

Failte Ireland activity database (point

data) (Fáilte Ireland 2019b), Sport Ireland

trail map (vector) (Sport Ireland 2021).

2

Table 1. 

List of variables and indicators capturing human, natural and built capital for  each 2 km  grid cell

and their sources.

2
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Model

family 

Model

structure 

Description Response (GPS-

tagged content)

Predictors (natural,

human and built

capital)

Output 

Global

regression (1)

Non-spatial

global logistic

regression (a)

Generalised linear

model (binomial

family and logit

link).

Binary. PUD

presence

Environmental

indicators at 2 km

resolution

Average

relationships

between

environmental

attributes and

likelihood of PUD

occurrence.

  Global logistic

spatially

autocorrelated

mixed-model

(SAM) (b)

Generalised linear

mixed-model

(binomial family

and logit link).

Environmental

predictor fixed

effects and spatial

random effect

(long + lat).

Binary. PUD

presence

Environmental

indicators at 2 km

resolution

Average

relationships

between

environmental

attributes and

likelihood of PUD

occurrence

accounting for

spatial

heterogeneity.

  Global poisson

spatially

autocorrelated

mixed-model

(SAM) (c)

Generalised linear

mixed-model

(poisson family

and log link).

Environmental

predictor fixed

effects and spatial

random effect

(long + lat).

Count. PUD total Environmental

indicators at 2 km

resolution

Average

relationship

between

environmental

attributes and

PUD counts

accounting for

spatial

heterogeneity.

Local

regression (2)

Logistic

geographic

weighted

regression

(GWR)

A series of logistic

regressions

(binomial family)

computed across

the landscape

weighting data,

based on proximity

to regression point.

Binary. PUD

presence

Environmental

indicators at 2 km

resolution

Local relationship

between

environmental

attributes and

PUD occurrence

that vary spatially

in magnitude,

direction and

significance.

2 

2 

2 

2 

Table 2. 

Outline of four models and description of their basic structure, data requirements and output. PUD

refers to photo-user-days metric.
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Maximum

Entropy (3)

Maximum

Entropy

(MaxEnt)

Predictive model

that uses machine-

learning and a

presence-only

approach, based

on observed

occurrence to

predict areas of

high suitability.

Point coordinates.

PUD occurrence

Environmental

variables as 100 m

rasters

100 m resolution

map of modelled

suitability of

visitation

occurrence and

variable

contributions to

model

performance.

InVEST (4) InVEST

recreation

model 

Self-contained

model that queries

an archived data

set and calculates

spatial statistics

on user-supplied

spatial data to

compute an OLS

regression.

Log Count.

Annual PUD

Raw spatial data

(vector or raster)

analysed using pre-

set options

Average

relationship

between

environmental

attributes and log

annual PUD.
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  Global logistic non-spatial

(a) 

(PUD Presence)

Global logistic SAM (b) (PUD

Presence)

Global poisson SAM (c)

(PUD Count)

Predictor Coefficient Standard

error

Sig Coefficient Standard

error

Sig Coefficient Standard

error

Sig

(Intercept) -1.303 -0.291 *** -1.767 0.582 *** -1.109 0.243 ***

Elevation -0.016 -0.002 *** -0.018 0.003 *** -0.009 0.002 ***

Slope 0.278 -0.042 *** 0.309 0.072 *** 0.129 0.025 ***

Coast distance -0.029 0.005 *** -0.047 0.011 *** -0.037 0.006 ***

River length 0.785 -0.18 *** 0.943 0.353 *** 0.373 0.159 ***

Water cover 0.022 -0.004 *** 0.031 0.007 *** 0.012 0.002 ***

Path length 0.082 -0.025 *** 0.127 0.034 *** 0.103 0.011 ***

Major road 0.674 -0.138 *** 1.131 0.189 *** 0.767 0.08 ***

Population 0.019 0.004 *** 0.022 0.001 *** 0 0  

Recreation site 0.608 -0.152 *** 0.666 0.229 *** 0.507 0.086 ***

Geological heritage 0.555 -0.161 *** 0.742 0.245 *** 0.29 0.089 ***

Habitat diversity 0.118 -0.053 ** 0.190 0.079 ** 0.152 0.031 ***

N 1642     1642     1642    

Log likelihood -803     -748     -3076    

AIC 1629     1518     6178    

Spatial

autocorrelation of

residuals detected:

Yes     No     No    

Table 3. 

Results of global regression models. PUD refers to the photo-user-days metric. SAM denotes a

spatially-autocorrected mixed-model using  a  random spatial effect.  Significance levels (Sig)  are

denoted as *** p < 0.001, ** p < 0.01, * p < 0.05.
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  Coefficient Standard error t value Sig

Intercept 0.112 0.108 1.04  

Elevation -0.00216 0.000340 -6.35 ***

Slope 0.0450 0.00599 7.51 ***

Population 0.00115 0.000260 4.41 ***

Habitat diversity 0.141 0.0337 4.17 ***

Agriculture -0.00462 0.000958 -4.83 ***

Forest and Natural Area -0.00538 0.00109 -4.92 ***

Wetlands -0.00331 0.000932 -3.55 ***

Coast distance -0.00000356 0.000001 -3.21 **

Town distance 0.00000871 0.000001 8.72 ***

Path Length 0.0000516 0.000004 13.17 ***

Recreation distance -0.0000158 0.000004 -4.09 ***

Degrees of freedom 1586      

Adjusted R2 0.487      

Table 4. 

InVEST regression  model  output  (ordinary  least  squares  regression  and  log  annual  PUD

response). Significance levels (Sig) are denoted as *** p < 0.001, ** p < 0.01, * p < 0.05.
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  Global regression (1) Local regression (2) Maximum entropy 

(3)

InVEST recreation 

(4)

Are of interest

and resolution

· Determined by

landscape

heterogeneity and

phenomenon of

interest

· Data coverage

determines resolution

· Variation at local scale

required

· Deployed where

spatially varying

relationships

hypothesised

· Data coverage

determines resolution

· Useful in data-

scarce regions with

low observations

· Permits fine

resolution

· Resolution should

ensure 50% cells

contain > 0 annual

PUD

· Limited use in data-

scarce regions

Social media

indicator

· User-determined

(automated or manual

collection)

· User-determined

(automated or manual

collection)

· User-determined

(automated or manual

collection)

· Flickr only

2005-2017

· Stable database

Response

variable

· Pre-processing and

filtering possible

· GPS inaccuracy can

be buffered

· Response variable

user defined such as

occurrence, rate or

count variables 

· Pre-processing and

filtering possible

· GPS inaccuracy can

be buffered

·  Response variable

user defined, such as

occurrence, rate or

count variables 

· Pre-processing and

filtering possible

· Point data required

(GPS coordinates of

occurrence)

· PUD variable fixed

and calculated

automatically

· GPS assumed

accurate

· Pre-processing and

filtering not possible

Environmental

predictor

variables

· User-driven indicator

calculation

· May require spatial

statistics and GIS

· Standard procedure

for variable inspection

(outliers, collinearity,

skewness)

· User-driven indicator

calculation

· May require spatial

statistics and GIS

· Variable inspection at

global and local scale

(outliers, collinearity,

skewness)

· Proximity variables

may be unsuitable

· User-driven indicator

calculation as raster

files of identical

extent

· May require GIS to

prepare

· Limited variable

inspection and

diagnostics

· User supplied

spatial data files

· Indicators

calculated by pre-set

spatial statistics

within model run

· Output returns

variables calculated

· Edits require re-

running entire model

Computation · Standard regression

tools in any statistical

software, for example,

R

· Model assumptions

require manual checks

(dispersion, outliers,

normality, spatial

autocorrelation)

· If spatial

autocorrelation

detected, consider

SAM or GWR models

· Specialised tools

available, for example,

MGWR software

· Emerging packages

(R and Python)

· Bandwidth and kernel

set by user

· Prior to run, standard

checks required

(dispersion, outliers,

normality)

· Local model checks

also required, for

example, local VIF,

Cook’s distance

· Standalone model

software open-

access and freely

available

· Compatible R

packages also

available

· Default output

includes model gain,

AUC and variable

response curves

· Optional jackknife

analysis included

· Optional replication

and data partition

· Standalone model

software, open-

access and freely

available

· Some additional

tools in Python API

· Automatically runs

OLS regression

· No available option

for model inspection

beyond default

regression table

output

Table 5. 

General findings from deploying four spatial model types to the same area of interest for providing

information for model selection.
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Accessibility

and

transferability

· Basic knowledge of

statistics and software

of choice, for example,

R

· Flexible and

customisable model

structure that can be

altered by the user

with relative ease

along a spectrum of

complexity

· Available to any user

familiar with basic

regression techniques

· Advanced spatial

modelling approach with

some customisation

(bandwidth, optimiser

criteria, GLM family)

· Requires some

specialist knowledge for

preparation and

interpretation

· Advanced model runs

may take time,

especially Monte Carlo

simulation

· Evolving field of

research with some

limitations, for example,

multiscale bandwidth

models

· Available online

supports

· Software and

machine learning

permits complex

modelling that

otherwise may be

unavailable

· Advanced model

runs may take time

especially when

replication is used

· Interpretation

requires expertise

with statistics

· Optional scenario

modelling included

· No coding

knowledge required

· User-friendly,

stand-alone interface

and outputs

· Dedicated online

support tools and

tutorials available

· Optional scenario

modelling

· Uncertain future as

archive becomes

outdated

Summary Widely applicable and

customisable, but

requires consideration

when selecting

resolution, scale,

indicators and

response variable

calculation. May be

limited depending by

data availability and

presence of local

relationships

Useful for investigating

spatially varying

relationships at the

landscape scale, but

should only be used

when justified. Requires

knowledge of spatial

statistics and mapping

tools. Some limitations

due to evolving

research field and

development of new

statistical approaches

Applicable at high

resolution and in data-

scarce regions to

predict areas of high

suitability, but requires

exact GPS

coordinates and some

degree of advanced

statistical

interpretation,

computational

resources and

preparation of raster

files

Useful for users to

detect and visualise

general trends with

limited resources

and expertise in

regions that are

sufficiently data-rich,

where the use of

2005-2017 Flickr

data is deemed

sufficient
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Supplementary materials

Suppl. material 1: Sites used for validation

Authors:  Andrew Neill

Data type:  Table

Brief description:  List of 38 sites across Ireland with official visitor statistics used to validate the

PUD social media indicator.

Download file (12.18 kb) 

Suppl. material 2: InVEST model configuration

Authors:  Andrew Neill

Data type:  Table

Brief description:  Table showing InVEST parameters used for environmental indicator calculation

within the model run. For full details of InVEST model configuration, see Sharp et al. (2018).

Download file (507.00 bytes) 

Suppl. material 3: Sampled PUD occurrence

Authors:  Andrew Neill

Data type:  Occurrences

Brief description:  GPS location of 6,672 PUD occurrences at the 2 km grid cell size, based on

data retrieved from Flickr API query. 

Download file (339.20 kb) 

Suppl. material 4: Moran's I Correlograms

Authors:  Andrew Neill

Data type:  Model diagnostics

Brief description:  Moran's I correlograms used to check for spatial autocorrelation of residuals of

three models used: non-spatial logistic GLM, SAMs and GWR.

Download file (1.02 MB) 

Suppl. material 5: MaxEnt Supplementary Info

Authors:  Andrew Neill

Data type:  Variable response curves

Brief description:  MaxEnt output files showing variable response and ROC plot, based on 100

bootstrap replicates using a 75:25 training:test partition. 

Download file (900.54 kb) 
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