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Abstract

The monitoring of ecosystem dynamics utilises  time and resources from scientists and

land-use managers, especially in wetland ecosystems in islands that have been affected

significantly  by  both  the  current  state  of  oceans  and  human-made  activities.  Deep-

learning models for natural and anthropogenic ecosystem type classification, based on

remote  sensing  data,  have  become  a  tool  to  potentially  replace  manual  image

interpretation. This study proposes a U-Net model to develop a deep learning model for

classifying 10 island ecosystems with cloud- and shadow-based data using Sentinel-2,

ALOS and NOAA remote  sensing  data.  We  tested  and  compared  different  optimiser

methods with two benchmark methods, including support vector machines and random

forests. In total, 48 U-Net models were trained and compared. The U-Net model with the

Adadelta  optimiser and  64  filters showed the  best result, because  it could  classify all

island ecosystems with 93 percent accuracy and a loss function value of 0.17. The model

was  used  to  classify  and  successfully  manage  ecosystems  on  a  particular  island  in

Vietnam. Compared  to  island  ecosystems, it  is  not easy  to  detect coral  reefs  due  to

seasonal  ocean  currents. However, the  trained deep-learning  models proved  to  have

high  performances  compared  to  the  two  traditional  methods. The  best U-Net model,

which needs about two minutes to create a new classification, could become a suitable

tool for island research and management in the future.
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Introduction

Currently, more than 100,000 islands have 500 million residents in total, encompass 20%

of global biodiversity and provide the according sustenance (Muñoz et al. 2013). Small

islands with an area under 10,000 km  are home to about 500,000 people (Liyun et al.

2018). According  to  the Millennium Ecosystem Assessment (MEA), island  ecosystems

are isolated from inland areas and surrounded by a large area of water or sea. A sixth of

the Earth's surface is covered by island ecosystems and the oceans around them (MEA

2003). These ecosystems also support more rare, endangered and vulnerable species

than those found on the mainland (Balzan et al. 2018). They provide both terrestrial and

marine ecosystem services (Laurans et al. 2013). However, islands are amongst the most

susceptible locations on the planet to the effects of human activities and environmental

changes. Eighty percent of the recorded species extinctions occur on islands and they

are presently home to 45 percent of the world's endangered species (Mueller-Dombois

1992). Consequently, the  changes in  island ecosystems have received great attention

from scientists in recent years (McLean et al. 2001, Laurans et al. 2013).

Improved earth observation and analytical skills have transformed our perspective on our

world, allowing for a more global perspective (Araujo et al. 2015, Kennedy et al. 2021),

which has the potential  to  have a profound impact on how humanity manages limited

island resources in particular (Laso et al. 2020). Several  remote sensing sensor types

have  been  used  to  categorise  natural  and  artificial  ecosystems  at  various  scales,

including  MODIS  for  global  land  use/cover  monitoring  (Nichol  and  Abbas  2015),

Sentinel-2  and  Landsat  for  national/regional  monitoring  (Dang  et  al.  2020b)  and

Worldview  and  Planet for  local  monitoring  (Zhang  et al. 2018). One  obstacle  is  how

remote  sensing  experts  communicate  their  findings  to  potential  end-users  (island

managers, policy-makers and conservation practitioners). For example, it is necessary to

discretise  continuous  data  regarding  coral  reefs  cover  into  usable  information,  for

example, for research, monitoring, planning and management (Kennedy et al. 2021). An

automated  procedure  that can  classify  island  ecosystems and  monitor  their  changes,

based on multi-temporal remote sensing data, can be relevant and should be  apparent,

transparent and discoverable for the end-users.

When using artificial  intelligence, machine learning (ML) classify information, based on

stored knowledge and do the work without any further assistance. Numerous research

projects have used deep-learning methods to identify vegetation clusters, emphasising

coastal and wetland habitats rather than island ecosystems (Dang et al. 2020b). Deep-

learning  technology  evolved  as  a  reaction  to  the  limitations  of  many  computer

programmes and the world’s infinite complexity. One of the primary advantages in object
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classification from remote sensing images has been to  successfully identify real-world

objects from a vast number of pixels. Therefore, image classification systems have often

relied on statistical classifiers that find characteristics (e.g. surface type or ground cover),

based on a variety of reflectance values across serveral spectral bands or using preset

rules to logically divide images into areas (Zhu et al. 2017). Nowadays, deep learning

models using remote sensing data (e.g. Sentinel-2, Landsat, Worldview and UAV) have

been applied  to  different land-use  planning  fields (Zhang et al. 2018). Various neural

networks  have  been  applied  in  deep-learning  processes,  such  as  Support  Vector

Machine (SVM), Convolutional Neural Network (CNN), fully convolutional network (FCN)

and  U-shaped  convolutional  neural  network  (U-Net)  (Zhu  et  al.  2017).  The  greatest

challenge for the deep-learning application is finding out which data-learning algorithms

are needed to detect image features reliably, how many different training samples are

needed and how variable is their performance.

Additionally, the deep learning models for land-cover classification have been commonly

designed for inland or coastal ecosystems (Feng et al. 2019) and not for isolated islands

which  contain  different  dynamic  natural  ecosystems, such  as  wetland  and  deep-sea

ecosystems.  Therefore,  developing  deep-learning  models  for  island  categorisation  is

becoming more relevant for scientists and managers (Hamylton et al. 2020). These deep-

learning-based models, which use both spatial and spectral data, are being evaluated as

a possible end-to-end solution for the categorisation of island ecosystems since they can

distinguish between objects impacted by water, waves, tides and currents.

This study aims to develop the most suited deep-learning models, based on the U-shape-

based  neural  network  for  classifying  and  monitoring  ten  ecosystems  on  a  particular

island in Vietnam using Sentinel-2 images. This study addresses three issues related to

deep-learning-based ecosystem type classification on a particular island in Vietnam:

• What are  the  benefits  to  use deep-learning  models  for  island  ecosystem type

classification?

• How do  U-Net models  compare  to traditional models  in  island  ecosystem type

classification?

• How were ecosystem types distributed on the Con Dao Island of Vietnam during

the last five years?

A 4-band  Sentinel-2  image  (including  red, green, blue  and  near-infrared) and  digital

elevation  models (DEMs) were  utilised  as input data  for  the  U-Net (basic)  models to

categorise different island ecosystems. Land covers on an island in Vietnam of about 20

km x 25  km were  built as a  mask for  training  deep-learning  models (Sections "study

area" and "input dataset preparation"). An accuracy comparison was made between the

results obtained from the trained U-Net models and two benchmark techniques, namely

Random Forest (RF)  and  Support  Vector  Machine  (SVM). Lastly,  the  new  Sentinel-2

images taken  since  2017 were  used  to  analyse  changes in  land  cover  on  Con  Dao

Island, Vietnam.
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Material and methods

Study Area

The Con Dao Island, which is a district of the Ba Ria-Vung Tau Province in the southeast

of Vietnam, approximately 187 km from Vung Tau City, was chosen as the study area (Fig.

1).  Con  Dao  Island  comprises  altogether  16  sub-islands  with  a  total  natural  area  of

approximately 76 km , the largest of which is Con Son Island (52 km ), which serves as

the  island  district's  economic, political, cultural  and  social  centre (Hong  Nguyen  et al.

2014).  Con  Dao  National  Park  has  a  high  level  of  biodiversity,  with  many  rare  and

valuable species, has been designated as a Ramsar site and is a member of the Network

of Important Sea Turtle Conservation Areas of the Indian Ocean – Southeast Asia region

(IOSEA) (PPC 2019).

In  addition to  the typical  habitats comprising woods, rivers, streams, lakes, sandbanks

and residential areas, the study area also includes specific ecosystems, such as corals,

seagrasses, shallow seas and deep seas. The mangrove forest ecosystem on Con Dao

Island is narrow, with approximately 30 ha, located primarily on three sub-islands (PPC

2019). This ecosystem type can only develop in arc-shaped bays, which are exposed to a

few powerful  waves, contain  dead coral, gravel  and are  subjected to  annual  alluvium

deposits. Therefore, the area of the mangrove ecosystems in this Island is smaller than

those in coastal  areas. Secondly, coral  reefs are located at most islands at a depth of

6-22 m, typically at around 6-8 m (PPC 2019). Thirdly, the seagrass ecosystem covers an

area of more than 1000 ha, is maintained by the Con Dao National Park and is primarily

located in two areas: Con Son and Dam Trau Bays (PPC 2019). The ecosystem of Con

Dao may be classified into terrestrial, wetland and marine ecosystem types (Tuan 2012).

The forest ecosystem is split into natural  timber, mangrove and bamboo forests. Other

habitats, such  as highland  areca  palm forests, sandy beaches and  annual  trees, are

dispersed throughout residential areas.

Based on remote sensing and GIS technology, Tuan (Tuan 2012) clarified that the size of

the forest area has not changed much during the last 20 years; only about 1.65% of the

islands’ area showed a decrease. The main reason is the expansion of the airport and

the water reservoir in  the  period  from 1996 - 2000 (Hong Nguyen et al. 2014). In  the

2020s,  tourism  development  was  identified  as  a  spearhead  economic  sector.  All

economic  activities  of  production  and  services  are  aimed  at  serving  ecotourism

development in  an  effective  and sustainable  manner (Hong Nguyen et al. 2014). It is

forecast that the increase in population size and the number of tourists will lead to various

pressures on  local  land-use  planning  from 2021 to  2030 (PPC 2017). Therefore, it is

necessary to develop a monitoring system for ecosystem changes in Con Dao under the

current socio-economic development context.
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Input dataset preparation

The deep-learning model is set up based on three steps (Fig. 2). These are explained in

detail in this section, from data review and collection to training and testing models. The

best deep-learning models are compared with two traditional models before using them

for new predictions.

Three main steps to develop a U-Net model for island ecosystem type classification are

shown in Fig. 2. The digital elevation models (DEM) and tidal wave data were needed to

get started on the first step of separating the inland, offshore and coastal ecosystems and

to build  new land-cover predictions (sections 2.4 and 2.5). Additionally, the DEM data

were used for separating cliffs with a slope steeper than 25 degrees. ALOS and NOAA

satellite data of seafloor and inland elevations of medium resolution were merged with

topographical  map  data  at  1:10000  scale.  The  ALOS  sensor  measured  30  metre

elevation data (so-called ALOS-DEM) with the use of the Panchromatic Remote Sensing

Instrument for  Stereo  Mapping  (PRISM) that were  collected, based  on  the  use  of the

Google Earth Engine programme (Mahdianpari et al. 2017). Due to the fact that ALOS-

DEM data only provide elevation information for terrestrial areas, the offshore relief was

taken from the NOAA data (Kuo et al. 2000). A 90 metre resolution raster for the offshore

area was created using NOAA-DEM data that were projected at WGS84/UTM 48N and

downscaled to 30 m. In order to generate a complete DEM for both parts of the research

area, the authors used ArcGIS software to combine the NOAA-DEM data with the ALOS-

DEM data.

Regarding  the  tide  level,  the  land-sea  boundary  can  be  identified  differently  on  the

Sentinel-2  image  between  high  and  low  tide  during  a  day.  Due  to  the  tides  in  the

research area fluctuating from 0.5-3.5  m, the boundary between land and sea can be

identified  in  the elevation  data  from -2  m to  +2  m. It  could  be  a  large  coastal  area.

Therefore, the tidal information is also collected to correct the boundary between inland

and wetland ecosystems obtained from DEM and Sentinel-2.  According to the metadata

of the Sentinel-2 images, seven images were taken at about 3:00 am. Meanwhile, the

local tide at that time is about 2.0-2.3 m. Therefore, it does not make a large change of

coastline in the seven images.

In addition to the cliff separation, based on ALOS and NOAA DEM data, the Sentinel-2

image obtained in February 2019 was integrated with the field mission in January 2021

to identify nine other island ecosystem types with cloud and its shadow. The initial stage

of classification was image segmentation, based on the pixel using eCognition software (

Trimble  2018). The  segmentation  process aimed to  achieve  uniformity in  each  image

object and a pair of adjacent objects were combined to reduce heterogeneity. However,

objects with different colours, structures and shapes were always classified as the same

type in some regions. Conversely, several objects with the same colours, structures and

shapes were included in the different categories. Therefore, it was necessary to integrate

the visual  interpretation with the auxiliary data collected to increase the manual island

ecosystem type classification accuracy.
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Fieldwork was carried out in January 2021 at Con Dao Island, Ba Ria-Vung Tau Province,

to verify the visual interpretation that was done indoors. It is difficult to find a good-quality

Sentinel-2 image on an island due to the effects of the cloud and its shadow, especially a

suitable image in 2020. Therefore, the fieldwork has been done in January 2021 when

the image obtained in April 2021 was not published. To improve the accuracy during the

fieldwork, the  authors worked  with  the  National  Park managers in  Con  Dao  Island  to

identify the stable area of ten island ecosystems during three years and then used them

as samples. The area with high changes in land cover was eliminated in the sampling.

With  this  method,  the  authors  can  identify  correct  samples  in  2019. With  the  inland

ecosystems, the  authors could  access them easily. With  the  wetland  ecosystems, the

authors  had  to  use  both  boats  and  diving  equipment for  observation  and  sampling.

Twenty polygons for each island ecosystem types for image interpretation were randomly

selected to assess the accuracy, based on fieldwork samples. Each polygon was limited

by  the  circular  plots  with  a  radius  of 40  m. In  total,  180  polygons (20  polygons x  9

categories = 180 polygons) were checked in the fieldwork and compared with the visual

interpretation  results  from the  satellite  image  obtained  on  07/02/2019  (Fig.  1). Fig.  3

shows the  sampling  on  the  Sentinel-2  and  the  field  image in  January 2021. With  the

combination  of natural  colours, the  shallow water surface  that is distributed  along the

coastline  is  easy to  distinguish  on  images with  light tones, while  deepwater  surfaces

have  darker  tones  and  are  distributed  further  from  the  shallow  water  surfaces.  Two

ecosystem types (seagrass and sandy dunes), which are located next to each other, are

also distributed along the coast and have a linear shape. Comparing the samples on the

remote-sensing image analysis and in the fieldwork, the authors differentiated these two

ecosystem types, based on their luminosity. The sandy dunes tend to reflect light more

strongly than the seagrass.

In the study area, it is challenging to distinguish mangroves and corals on the images

from a  pixel-based  classification  because  their  total  area  is  so  small  and  scattered.

However, these types of ecosystems are easily accessible in the field. Therefore, these

types were  added  to  the  outcome of the  U-Net model  after  the  fieldwork. For natural

forests, the vegetation density is high, so the pixels in the image have a relatively uniform

reflectance spectrum with  the tone of natural  colours and the forest edges often  have

irregular shapes. For residential areas, due to the appearance of many different objects,

such as buildings, gardens, roads and parks, the reflection spectrum is not uniform, with

relatively clear  boundaries. The  spatial  arrangement of the  residential  area  manifests

itself in the orderly repetition of colour tones and similar structures.

Based  on  the  main  sample  characteristics,  the  authors  interpreted  ecosystem types,

based on their colours, structures and shape from the segmentation process in the eCog

nition software (Trimble 2018). This process formed altogether 9546 polygons classified

into 11 categories (nine inland ecosystems, cloud and  shadow). Regions with the same

colours, structures and shapes have been combined into one ecosystem type. For areas

with  the  same  colours, structures  and  shape, but different natural  characteristics, we

additionally used higher resolution images like Google Earth or the land-use map. These
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more  precise  results  of  this  step  are  essential  for  developing  the  U-shaped  Deep-

Learning models in the next steps.

Setting up U-Net model for island ecosystem type classification

The  basic  U-Net  architecture  is  a  supervised  learning  algorithm,  based  on  a

Convolutional Neural Network (CNN) to identify the classes of interest by modifying the

parameters of convolutional filters (Li et al. 2018). The term “U-Net” relates to its shape. It

is similar to the “U” letter with three main parts, including contraction (or encoder), bottle-

neck and expansion (or decoder). First, it does not use any fully connected layers during

the classification process. The other half of the U-Net provides the connection between

features. From that, the U-Net could help to implement any size of input data. Second, the

U-Net uses  the  padding  method, which  allows the  architecture  to  be  partitioned  into

completed images. This method is critical in segmentation due to its ability to avoid the

limitation of GPU memory in the classification process (Dang et al. 2020a). It explains

why the  U-Net has been applied  in  various studies, including  the  research  related  to

ecosystem type classification.

The structure  of the U-Net model  for island ecosystem type classification is presented

in Fig. 4. The input image is passed in the encoder part by different blocks with two CNN

layers, a 3 x 3 kernel size and one 2 x 2 Max Pooling layer. The number of kernel and

feature maps is doubled after each block. It means that the spatial resolution of the input

image  is decreased  and  the  spectral  resolution  of the  input image  is increased. This

structure  can  support the  efficient  learning  of  complex  features  (Zhang  et  al.  2018).

However, the most important part of the basic U-Net is focused on the expansion part (or

decoder). The encoder part also includes different blocks with two 3 x 3 CNN layers and

one 2 x 2 up-sampling layer. Nevertheless, each input image block can be added to the

feature  map  of  the  respective  encoder  to  keep  the  structure  of  features  during  the

regeneration process (Diakogiannis et al. 2020). It should be noted that the number of

encoders  and  decoders  is  the  same.  In  this  study,  the  U-Net  model  for  the  island

ecosystem  type  classification  was  implemented  using  Python  and  the  Scikit-Learn

package. Numerous combinations of parameters were pre-defined, including the number

of  filters,  number  of  hidden  layers,  batch  size  and  dropout probability,  to  obtain  the

optimal parameters for the model. Besides, the number of iterations was also modified to

avoid the over-fitting problem during the training process. The results were compared by

using accuracy assessment indices such as Overall Accuracy, loss function and Kappa

values.

Model optimisation

Based on the deep-learning approach, various methods have been used to optimise a U-

Net model, such as the changes of training size, optimiser functions and loss function (

Carranza-García et al. 2019). This section describes all alternative options to maximise

the total accuracy of the U-Net models. The training size and the number of filters were

changed in different loss functions and optimiser methods (see below). As the study area
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is about 400 km , the input samples were fitted with three training size options of 64 x 64,

128 x 128 and 256 x 256. The number of filters was modified, respectively, from 8, 16, 32,

to 64.

Regarding the optimisation, various loss functions were considered in this study. In most

cases, the loss function has been used to calculate the quantity that the model should

attempt to minimise throughout the training process. The mean squared error function is

the most frequently used loss function in  regression models, while  the “cross entropy”

loss function is the most commonly used loss function in classification models, based on

probability calculations (Pasupa et al. 2020). As 11 land-cover objects were assigned an

integer value  in  the  model  before  they were  translated  to  the  corrected  names in  the

integration step of the U-Net models, the binary cross entropy was not appropriate. The

binary cross-entropy function is used to calculate the cross-entropy loss between actual

labels and forecast labels in binary data. Therefore, the “categorical cross-entropy” loss

function was selected for the multi-island ecosystems. Multi-class classification models

utilise this function type to assign a number or a one-hot code as the output label. The

Cross-Entropy loss value was estimated after running Softmax activation layers (Elfwing

et al. 2018). Therefore, it is called “Softmax Loss". The “categorical  cross-entropy” loss

function evaluates the performance of a model  that generates a probability between 0

and 1, based on the following formula:

         (Formula 1)

where V  denotes the net's estimated scores for each class in 11 island ecosystem types

and V  denotes the network's estimated score for the positive class.

Different optimiser approaches may be used to build neural networks in order to reduce

their  related  costs (e.g. loss of data  information, training  time and uncertainty). In  this

study, four optimiser types were applied including Adaptive Moment Estimation (Adam),

Adaptive  Gradient  Algorithm  (Adagrad),  Adadelta  and  Stochastic  Gradient  Descent

algorithm (SGD) (Fig. 5) (Dang et al. 2020a). It was necessary to calculate the errors of

the  trained  models  (or  the  loss  function)  on  a  continuous  basis  while  running  the

optimisation  cycles.  After  each  epoch, the  weights  of  all  trained  U-Net models  were

adjusted in order to reduce the size of the weight loss for the next assessment as much

as possible. This figure offers a high-level summary of the optimisation techniques that

have been previously covered. The training size and the number of filters were modified

in each optimiser method. Lastly, selecting the optimal optimiser technique is the most

efficient method of determining a model  with the highest accuracy and the lowest loss

function value.

Model comparison

In  order  to  assess  the  performance  of  all  trained  U-Net  models  for  ecosystem

classification, based on an object-based approach, two traditional  models, based on a

pixel-based approach were generated, including random forest (RF) and support vector
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machine (SVM). As these two models were made, based on the pixel-based approach,

the optimiser parameters are also different from the U-Net models, as follows:

Random Forest (RF)

Random Forest (RF) is a powerful algorithm in a supervised-learning class, based on the

predicted results of decision trees for resolving problems in classification and regression.

This algorithm was firstly introduced by Breiman and his group in 2001 (Breiman 1996).

RF allows combining (or ensembling) a large number of weak models to obtain better

results with a higher accuracy than a single model. Each sub-model (or each decision

tree) in the classification is assessed by a voting method to identify which one is the best

model. In  this case, majority voting  is commonly used (Lary et al. 2016). Other voting

approaches  were  also  implemented  in  RF with  lower  frequency,  such  as  veto  and

weighted voting methods. Based on Tian et al. (2016) and Lary et al. 2016,the algorithm

works in 4 steps:

1. Choose random samples from the dataset;

2. Create decision trees in the forest for each sample;

3. Vote for the predicted result; and

4. Return the decision tree with the most votes.

During the training process, the RF  decreases the bias and increases the variance of the

model. From that, it avoids the over-fitting problem by passing the average of predictions (

Mahdianpari  et  al.  2017).  This  is  one  of  its  main  advantages.  RF  also  allows  the

processing  of the  missing  data  problem by using  the  median  of adjacent values. The

performance  of  RF  is  affected  by  several  parameters,  such  as  max_features,

n_estimators and min_sample_leaf. The selection of parameter values is very important

because it directly relates to the speed and the accuracy of the model. The higher value

of parameters  will  give  the  high  accuracy. However, it  also  makes the  model  speed

slower. In  addition, there  will  not be  much  change  in  accuracy when  the  parameters

reach a certain value. Therefore, we need to select an optimised value for parameters to

have the balance between accuracy and speed. In this study, the input data for the RF

model  that is  similar  to  those  for  the  U-Net models  was encoded  through  100  trees

(n_estimators) before achieving the final model. The RF has a low memory performance

because it has a large number of decision trees, which require processing many times. 

Support Vector Machine (SVM)

SVM, or Support Vector Machine, is a popular supervised-learning algorithm that was first

proposed in the 1970s (Karatzoglou et al. 2006). This algorithm has been applied in a

variety  of  applications  in  different  fields,  including  chemistry  (Houssein  et  al.  2020

), biology (Huo et al. 2020) and especially in  Earth  Science for remote sensing image

classification  (Sabat-Tomala  et al. 2020). This is  an  effective  tool  in  high-dimensional

computing space with a low memory cost. The initial idea of SVM is to design an optimal

hyper-plane (or the maximal margin) to divide the destination dataset into a separated

number of pre-defined classes from the training dataset (Cervantes et al. 2020). In other
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words, the main goal of SVM is to convert a set of data from the 2-dimensional space into

a higher dimensional space and split features into different groups. However, it becomes

more difficult to  analyse the non-linear properties of data. The soft margin  and kernel

functions,  which  Vapnik  and  Cortes  established,  were  used  to  solve  this  limitation  (

Gopinath et al. 2020).

The performance of SVM highly depends on the selection of kernel functions because it

increases the flexibility in creating the decision boundaries of a dataset (Razaque et al.

2021).  SVM  has  five  kernel  functions  including  linear,  poly,  RBF,  sigmoid  and

precomputed. The authors chose the RBF kernel function for this research because it is

one of the most widely used kernels, which has similarity to the Gaussian distribution and

has a good performance for image classification problems. Besides the kernel function,

SVM has two parameters, which  affect the  performance of the  model, such  as C and

gamma. The gamma parameter allows checking how far the influence of a single training

sample reaches. The C parameter, which is considered as a regularisation parameter of

SVM,  relates  to  the  correct  classification  of  training  samples  to  counteract  the

maximisation margin of the decision function. The value of the two parameters needs to

be  optimised  to  obtain  the  best  performance  during  the  SVM development  process.

Commonly,  SVM  models  can  be  optimised  with  a  higher  gamma  value  and  lower

C value. In this study, the gamma value was selected at 0.2 and C value is 1.0. The input

data samples for SVM are similar to RF where it was divided into two arrays including

values of attributes (or features) and values of labels (or observed values). In which, the

values of attributes were  transformed to  values in  the  range [0, 1] using  the  Min-Max

Normalisation  method  to  help  to  increase  the  speed  performance  during  the  training

process. We also applied K-Fold cross-validation to evaluate the models with k = 10. The

K-Fold cross-validation splits a dataset into k non-overlapping folds. This technique will

allow avoiding the overfitting problem when training the models.

All  models were  implemented  in  a  workstation  (Intel  Xeon  Silver  4112  2.6GHz; Ram:

128GB DDR4 3200 MHz; Graphics: Nvidia Quadro RTX5000, 16GB, 4DP) using Python

programming  language  via  TensorFlow and  Scikit-Learn  frameworks. After completing

both SVM and RF models, the results were compared with the best U-Net model to check

the  improvement of the  selected  deep-learning  models for  the  island  ecosystem type

classification.

Application  of  trained  U-Net  models  for  the  island  ecossytem  type
classification

Once  the  optimal  U-Net model  for  the  classification  of island  ecosystem types  using

Sentinel-2 and DEM data have been established, its primary purpose was then to identify

ten  island ecosystem types with  cloud and its shadow on new images. This research

project concentrated on ten habitats on the Con Dao Island. Six new Sentinel-2 images in

the  specified  region  were  selected  for  new  interpretation  across  a  three  year  period

(2017, 2019 and 2021). Additionally, as described in above sections, data collection and

pre-processing were performed. As soon as the new picture was fed into the trained U-
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Net, the model made use of the previously learned parameters to convert the new images

into  particular  spatial  matrices,  creating  intermediate  matrices  and  to  interpret  the

appropriate classes for each pixel in the new image. All of these prediction methods are

self-contained and do not need additional training data.

Results

U-Net model performance

Based on the changes in the training size, the number of filters and optimiser methods,

48 U-Net models were trained. The total accuracy and loss function values were used to

compare the  performance of these U-Net models (Table  1). Accordingly, the  accuracy

showed an  upward  trend  with  increasing  filter  numbers. Although  the  increase  in  the

training size did not express a clear trend in the loss and accuracy values, the training

size  at 256  x  256  x  4  made  a  more  accurate  prediction  in  all  cases of the  optimier

methods.  In  four  types  of  optimiser  methods,  the  UNet-SGD  models  had  the  lowest

performance compared to other methods. These models commonly provide an average

loss value of 0.59 and an average accuracy of 75.1%.

Three U-Net models had an accuracy higher than 80%: the UNet-Adam-256-32, UNet-

Adadelta-256-64  and  UNet-Adagrad-256-64  models.  Especially,  the  UNet-

Adadelta-256-64 model was assessed to have the highest performance with an accuracy

of 93.36% and a loss function value of 0.16 (Fig. 6 and Table 1). In general, the loss and

accuracy values were closely aligned. These values fluctuated during the first 30 epochs

before converging in the last 30 epochs. The faster converging process can be found in

the UNet-Adam-256-32 and UNet-Adagrad-256-64 models. The UNet-Adadelta-256-64

model provided a better prediction for some specific island ecosystem types compared to

others.  Meanwhile,  the  prediction  performance  of  the  UNet-Adam-256-32  model,

although it achieved a  total  accuracy of 81.73%, can be balanced amongst all  island

ecosystem types.

Accuracy comparison

The accuracy of the island ecosystem type classification on Con Dao Island, based on

the interpretation of five trained models is shown in Fig. 7 and Table 2. Accordingly, most

inland ecosystems, as well as clouds and their shadows, were predicted similarly in all

three model  types. The wetland ecosystems along coasts are different, especially with

coral  reefs,  shallow-water  areas  and  deep-water  areas.  The  Unet-Adadelta-256-64

model detected most of the coral reefs, while the Unet-Adam-256-32 model only detected

about 75%. The  shallow-water  areas  were  interpreted  heterogeneously  by  the  Unet-

Adam-256-32  and  Unet-Adagrad-256-64  models,  whereas  the  distribution  of  this

ecosystem  type  seems  to  be  more  homogenous  in  the  interpretation  of  the  Unet-

Adadelta-256-64  model. In  the  results  obtained  from the  two  benchmark models, the

coral reefs were not detected by the RF model. The residential  areas were mixed with
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forest and sandy dunes with the RF model result. Both benchmark models predicted that

it is difficult to separate deep-water areas from the deep sea. The differences between the

results of all  U-Net models and the two benchmark models can be seen in the shallow

water areas. According to the benchmark models, this specific ecosystem type can be

observed  in  the  eastern  part  of  the  Island, whereas  all  U-Net models  interpreted  its

distribution around the Island.

The  accuracy  comparison  between  the  three  U-Net models  and  the  two  benchmark

models with new predictions is shown in Table 2. All three U-Net models can detect four

types  of  island  ecosystem  types:  deep  sea,  seagrass,  residential  areas  and  natural

forests. The UNet-Adadelta-256-64 model  is the best model  for classifying most island

ecosystem types with a total accuracy of 86.6% and a Kappa index of 0.9. The two other

U-Net models interpret coral reefs and deep-water areas with a low accuracy. In the two

benchmark models, the RF only achieved an accuracy of 50% with a Kappa index of 0.5.

Although the SVM can interpret seagrass and natural forest with an accuracy higher than

80%, it cannot be used to interpret coral reefs and deep-water areas. Therefore, it is easy

to confirm that the results from all U-Net models have a higher accuracy than those from

the two benchmark models.

Island ecosystem changes in Con Dao Island

Fig. 8 depicts  the  distribution  of ten  island  ecosystem types  on  the  Con  Dao  Island.

Besides the ten ecosystem types that were separated successfully, based on the UNet-

Adadelta-256-64 model, cliffs were identified, based on the DEM data with a slope higher

than 30 degrees. The speed at which one can interpret a full Sentinel-2 image is about

125 to 140 seconds. Clouds and their shadows were found in all Sentinel-2 images and

were  then  combined  into  one  type.  The  mangrove  and  natural  forests  have  been

maintained  or have  slightly decreased since  2017. The  wetland  ecosystems changed

significantly due to the effects of ocean currents and tide levels, especially in shallow-

water (about 7-10%), deep-water areas (about 10-14%) and others (about 2-4%). The

ocean currents from the north-eastern part of the Island in the dry season (from October to

April) have created suitable conditions for seagrass and coral  reefs to develop on the

south-eastern side of the Island. Sand dunes and residential areas are also stable on this

side. The area of the deep-water regions have increased significantly in July and different

high-slope cliffs developed along the north-western side.

Discussion

Comparison with formal networks/frameworks

It is worthwhile to have a tool that suits the specific needs of different stakeholders (e.g.

land  managers).  This  research  project  developed  different  deep-learning  models  to

interpret ten different inland and offshore ecosystem types on the famous Island of Con

Dao, Vietnam. As island  ecosystems are  commonly affected  by both  local  and  global
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climates, especially by storms and waves, the land cover of all ecosystems can change

rapidly  during  rainy  and  dry  seasons.  Previous  studies  have  already  developed

classification models for inland and coastal wetland ecosystems; however, some island

ecosystems, such as coral reefs and seagrass, were not identified. The addition of these

two  ecosystems  in  the  trained  models  can  meet  the  needs  of  island  managers.  In

comparison,  generating  an  island  land-cover  map  using  conventional  interpretation

techniques with actual field samples may take considerable time. Meanwhile, the UNet-

Adadelta-256-64  model  can  effectively  and  quickly  interpret  ten  different  island

ecosystem types, clouds and their shadows from recent satellite images using training

weight and calibration results contained in the trained model.

In  addition  to  the  former  inland  ecosystems,  clouds  with  their  shadows  and  seven

wetland ecosystem types, based on the RAMSAR and MONRE classification systems,

were added to the trained models. The addition of seven wetland ecosystem types is the

first difference in comparison to all other models that were developed in previous studies

(Pouliot et al. 2019, Dang et al. 2020a). Previous studies mainly explored methods and

models  to  describe  wetlands,  rather  than  why  their  findings  matched  the  wetland

categorisation systems and how to implement their findings in practice. In this study, the

preparation for all U-Net models, training and testing steps, based on the remote sensing

images, were explained in detail. Secondly, as an additional  function compared to the

traditional  models, all  trained U-Net models can specifically separate clouds and their

shadows,  as  well  as  objects  covering  natural  and  anthropogenic  ecosystems  in  all

islands. It is easy to collect Sentinel-2 or Landsat images without clouds and shadows for

inland or coastal  areas, but it becomes more complex for islands due to the effects of

weather and terrain. For example, on most islands, the clouds and their shadows are

near high mountains even in summer. Therefore, it is necessary to add them to the island

cover interpretation models. Cloud cover affects the availability of useable satellite data

in the study region by preventing optical sensors from acquiring high-quality images of

the  island ecosystem types. The sky varies significantly in  terms of cloud and surface

brightness an, in certain instances, it is hard to differentiate between white clouds and

bright land, mainly if the land surface is covered with sand. Following that, hazy cloud

boundaries and thin clouds obscure ground surfaces, creating ambiguity and making the

data harder to interpret. Furthermore, cloud shadows may be combined with darkened,

moist soil, water and other dark objects. All these issues influence the interpretation of the

cloud and its shadow objects in the trained models. This issue has reduced the accuracy

of the models for interpreting these objects to about 80%.

Improvement of island ecosystem type classification models

As the  research  area  is  a  small  island, where  the  training  and  testing  samples were

collected in one year, the U-Net models could not clearly detect coral reefs, mangroves or

sandy dunes. All  islands are affected by currents waves and annual storms, leading to

partly dramatic changes in the offshore sediments and climate. In particular, coral reefs

can develop in waters with temperatures ranging from 20-32°C. During the rainy season,

they can easily vanish when a wave or current containing offshore sediments flows over
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them, converting  them to  shallow  water  cover. Meanwhile, the  mangrove  ecosystems

commonly develop in coastal areas. Therefore, the areas of coral reefs and mangroves

observed on islands are rather small. As a powerful function of deep-learning methods,

all U-Net models enable developers to update trained models with new data in order to

build  more accurate models. When more samples are available, sophisticated models

may predict more accurately the kind of island ecosystem and offer more management

choices. The multi-temporal remote sensing data can be used in this step to optimise the

total  accuracy,  as  well  as  the  accuracy  of  coral  reef  interpretation.  As  the  area  of

mangrove ecosystems is too small  in the research area, it is necessary to collect more

mangrove samples in  coastal  areas. However, the  addition  of coastal  mangroves can

improve  the  variety  between  the  island  and  coastal  ecosystem  types.  Therefore,  to

improve this issue, we think the SAR data from Sentinel-1 or data related to sea surface

topography,  sea  and  land  surface  temperature  and  ocean  and  land  surface  colour,

calculated from Sentinel-3, can improve the interpretation of mangrove and coral reefs.

However,  they  all  are  new  sensors  and  require  more  research  in  the  future.  Some

application of SAR data for analysing climatic condition was also mentioned in different

Data Cube in European and Asian countries and can correct the distribution of mangrove

and  coral  reefs. However, the  resolution  of these  data  is still  low. The  high-resolution

images obtained, for instance, from Lidar or unmanned aerial vehicles (UAVs) can also

be used to monitor this specific ecosystem in the future. 

The development of 48 U-Net models for island ecosystem categorisation is expensive

and time-consuming. A CPU Intel (R) Xeon (R) CPU @ 2.6GHz with 32GB RAM and a

GPU NVIDIA GeForce GTX1070 were built for this study. Each U-Net model took from 30

to 40 seconds to train each epoch. Additionally, each RF and SVM model takes 60 to 70

seconds to train, on average. Even though it takes a while to train a U-Net model, fresh

data may be used to  update a  learned model. Future U-Net models may benefit from

adopting  other  optimisation  methods,  such  as  evolutionary  or  swarm intelligence,  in

place of a  traditional  optimisation method; or using fresh multi-spectral  satellite  image

data  to  gain  additional  knowledge.  High-resolution  data  may  be  used  with  a

supercomputer to quickly interpret all kinds of (island) ecosystem types.

Conclusions

This study demonstrated  the  benefits of combining  deep-learning  and remote-sensing

data for monitoring island ecosystem types. Besides interpreting new satellite images in

any coastal region at any moment, the UNet-Adadelta-256-64 model was developed to

interpret  the  distribution  of  ten  island  ecosystem  types,  as  well  as  clouds  and  their

shadows. The accuracy of the model reached 93%, with a loss function value of 0.16. The

best-trained U-Net model was utilised to effectively identify the island ecosystem types on

Con Dao Island within six years using Sentinel-2 data. A total of 11 different ecosystem

types was found  on  Con  Dao  Island. Besides comparably common ecosystem types,

characteristic coral reefs and seagrass can be found surrounding the Island, whereas the

distribution of the shallow water ecosystems depends on the season and currents. After
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five years, the mainland ecosystems have not changed, except for residential areas due

to  urbanisation. Land-use  managers  could  use  the  data  and  approaches  to  monitor

ecosystem dynamics on islands every season instead of using traditional methods that

assess changes every five years. It may be possible to retrain the model with additional

samples in the future and use it to categorise ecosystems on other islands.
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Figure 1.  

Study area and ground control points on Sentinel-2 image obtained in 07/02/2019 in Con Dao

Island, Vietnam.
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Figure 2.  

The structure of the deep-learning model development for island ecosystem type classification.
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Figure 3.  

The sample in the Sentinel-2 image take in February 2019 and the fields in January 2021 in

Con Dao, Ba Ria- Vung Tau Province.
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Figure 4.  

The architecture of the basic U-Net used for island ecosystem type classification.

 

22

https://arpha.pensoft.net/zoomed_fig/7607927
https://arpha.pensoft.net/zoomed_fig/7607927
https://arpha.pensoft.net/zoomed_fig/7607927
https://doi.org/10.3897/oneeco.7.e79160.figure4
https://doi.org/10.3897/oneeco.7.e79160.figure4
https://doi.org/10.3897/oneeco.7.e79160.figure4


Figure 5.  

The four chosen optimisation algorithms to train parameters of the U-Net models for the island

ecosystem classification,  adapted from Gulli (2017),  Iglovikov et  al.  (2017) and Alom et  al.

2019.
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Figure 6.  

The loss function and accuracy values of three trained U-Net models that achieved the highest

performance.
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Figure 7.  

The  interpretation  results of  Con  Dao  Island  ecosystem types,  based  on  satellite  data  in

27/02/2019 based on five models.
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Figure 8.  

Island ecosystem classification from ALOS and NOAA DEM data and multi-temporal Sentinel-2

images, based on the UNet-Adadelta-256-64 model.
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No. Optimiser Size No. filters Loss ACC  No. Optimiser Size No. filters Loss ACC

1 Adam 64 8 0.566 76.86  25 Adadelta 64 8 0.579 76.52

2 Adam 64 16 0.491 77.85  26 Adadelta 64 16 0.514 77.36

3 Adam 64 32 0.521 77.32  27 Adadelta 64 32 0.488 78.11

4 Adam 64 64 0.496 77.97  28 Adadelta 64 64 0.469 78.48

5 Adam 128 8 0.578 73.32  29 Adadelta 128 8 0.564 74.63

6 Adam 128 16 0.535 75.23  30 Adadelta 128 16 0.547 75.13

7 Adam 128 32 0.481 76.91  31 Adadelta 128 32 0.488 76.38

8 Adam 128 64 0.497 76.11  32 Adadelta 128 64 0.442 78.21

9 Adam 256 8 0.509 76.19  33 Adadelta 256 8 0.516 75.71

10 Adam 256 16 0.427 79.51  34 Adadelta 256 16 0.469 77.37

11 Adam 256 32 0.374 81.95  35 Adadelta 256 32 0.456 78.33

12 Adam 256 64 0.436 77.78  36 Adadelta 256 64 0.167 93.36 

13 SGD 64 8 0.621 76.24  37 Adagrad 64 8 0.606 76.59

14 SGD 64 16 0.623 76.15  38 Adagrad 64 16 0.579 77.03

15 SGD 64 32 0.596 76.51  39 Adagrad 64 32 0.552 77.13

16 SGD 64 64 0.574 76.92  40 Adagrad 64 64 0.521 77.41

17 SGD 128 8 0.657 73.67  41 Adagrad 128 8 0.633 74.09

18 SGD 128 16 0.646 73.95  42 Adagrad 128 16 0.565 74.71

19 SGD 128 32 0.573 74.64  43 Adagrad 128 32 0.516 75.67

20 SGD 128 64 0.585 74.61  44 Adagrad 128 64 0.506 76.46

21 SGD 256 8 0.598 74.11  45 Adagrad 256 8 0.562 74.39

22 SGD 256 16 0.588 74.55  46 Adagrad 256 16 0.455 77.77

23 SGD 256 32 0.561 74.99  47 Adagrad 256 32 0.461 77.91

24 SGD 256 64 0.551 75.41  48 Adagrad 256 64 0.372 82.49 

Table 1. 

Model performance of 48 trained U-Net models for island ecosystem type prediction.
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Sample

distribution 

Class accuracy 

Type No.

Samples 

UNet-

Adam-256-32 

UNet-

Adagrad-256-64 

UNet-

Adadelta-256-64 

SVM RF 

Ecosystem types 

Deep sea 997 97.4 97.8 99.4 98.5 97.2

Sandy dunes 962 74.8 76.0 79.5 77.5 26.8

Seagrass 983 85.8 88.3 93.4 85.4 85.0

Residential area 939 80.9 80.4 90.4 76.3 19.2

Natural forest 990 97.4 97.2 98.6 97.8 97.2

Coral reefs 852 27.0 30.4 64.9 21.8 3.2

Shallow water area 992 77.6 85.0 98.7 59.1 48.1

Deep water area 990 38.1 61.3 95.3 4.4 0.0

Other types 

Cloud shadow 943 65.6 66.9 58.5 63.4 50.1

Cloud 982 85.8 86.3 87.8 83.1 75.3

Total 9,630 Overall accuracy (%) 

73.0 77.0 86.6 66.7 50.2

Kappa Coefficient 

0.7 0.8 0.9 0.6 0.5

Table 2. 

The Cross-Validation of three trained U-Net models and two benchmark models for  the Island

ecosystem type classification.

28


	Abstract
	Keywords
	Introduction
	Material and methods
	Study Area
	Input dataset preparation
	Setting up U-Net model for island ecosystem type classification
	Model optimisation
	Model comparison
	Random Forest (RF)
	Support Vector Machine (SVM)
	Application of trained U-Net models for the island ecossytem type classification

	Results
	U-Net model performance
	Accuracy comparison
	Island ecosystem changes in Con Dao Island

	Discussion
	Comparison with formal networks/frameworks
	Improvement of island ecosystem type classification models

	Conclusions
	Acknowledgements
	Funding program
	Grant title
	Hosting institution
	Conflicts of interest
	References

