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Abstract

As herbarium specimens are increasingly becoming digitised and accessible in online

repositories, advanced computer vision techniques are being used to extract information

from  them. The  presence  of  certain  plant  organs  on  herbarium  sheets  is  useful

information in various scientific contexts and automatic recognition of these organs will

help mobilise such information. In our study, we use deep learning to detect plant organs

on digitised herbarium specimens with Faster R-CNN. For our experiment, we manually

annotated hundreds of herbarium scans with thousands of bounding boxes for six types

of  plant  organs  and used  them for  training  and  evaluating  the  plant  organ detection

model. The model worked particularly well on leaves and stems, while flowers were also

present in large numbers in the sheets, but were not equally well recognised.
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Introduction

Herbarium collections have been the basis of systematic botany for centuries. More than

3000  herbaria  are  active  on  a  global  level, comprising  ca. 400  million  specimens, a

number that has doubled since the early 1970s and is growing steadily (Thiers 2020).

Accessibility  of  these  collections  has  been  improved  by  international  science

infrastructure  aggregating  specimen  data  and  increasingly  also  digital  images  of the

specimens. Plant specimens, being usually flat and of a standard format approximating

A3 size, are easier to digitise than most other biological  collection objects. The Global
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Plants Initiative (Smith and Figueiredo 2014) has been very successful in digitising type

specimens around the world. Single collections, such as the National Museum of Natural

History in Paris, have digitised their collections completely (Le Bras et al. 2017) and large

scale national or regional digitisation initiatives are already taking place or are planned

for the near future (Borsch et al. 2020). Presently, there are more than 27 million plant

specimen records with images available via the GBIF platform (www.gbif.org), the vast

majority of these images being herbarium scans. 

This  rising  number  of  digitised  herbarium sheets  provides  an  opportunity  to  employ

computer-based image processing techniques, such as deep learning, to automatically

identify  species  and  higher  taxa  (Carranza-Rojas  et  al.  2017, Younis  et  al.  2018,  

Carranza-Rojas et al. 2018) or to extract other useful information from the images, such

as the presence of pathogens (as done for live plant photos by Mohanty et al. 2016).

Deep learning is a subset of machine learning methods for learning data representation.

Deep learning techniques require huge amounts of training data to learn the features and

representation of those data for the specified task by fine tuning parameters of hundreds

or thousands of neural networks, arranged in multiple layers. Learning the value of these

parameters can take vast computer and time resources, especially on huge datasets.

The most common type of deep learning network architecture being used for extracting

image features is the Convolutional Neural Network (CNN) (LeCun and Bengio 1995). A

convolutional  neural  network extracts the  features of an  image  by passing  through  a

series of convolutional, non-linear, pooling  (image  downsampling)  layers and  passes

them to  a  fully connected layer to  obtain  the  desired output. Each convolutional  layer

extracts the visual features of the image by applying convolution operations to the image

with kernels, using a local receptive field, to produce feature maps and passing it as input

to the next layer. The initial layers in the network compute primitive features on the image,

such  as  corners  and  edges, the  deeper  layers  use  these  features  to  compute  more

complex features consisting of curves and basic shapes and the deepest layers combine

these shapes and curves to create recognisable shapes of the concepts in the image (

Yosinski et al. 2014, Zeiler and Fergus 2014).

In this paper, we use deep learning for detecting plant organs on herbarium scans. The

plant organs are detected using an object detection network, which works by localising

each object with a bounding box on the image and classifying it. There are many types of

networks, based on CNN, used for this application. In this study, a network called Faster

R-CNN (Ren et al. 2015) was used, which is part of the R-CNN family for object detection.

Region-based Convolutional Networks (R-CNN) identify objects and their locations in an

image.  Faster  R-CNN  networks  have  shown  state-of-the-art  performances  in  various

object  detection  applications  and  competitions  (Zhao  et  al.  2019).  Therefore,  many

researchers have explored the use of CNN and particularly Faster R-CNN for detecting

various plant organs, such as flowers, fruits and seedlings (Sa et al. 2016, Stein et al.

2016, Häni et al. 2020, Mai et al. 2018, Sun et al. 2018, Bargoti and Underwood 2017, 

Jiang et al. 2019, Ott et al. 2020, Weaver et al. 2020). To our knowledge, this is the first

time object detection  has been used  to  detect both  vegetative  and  reproductive  plant

organs on herbarium scans.  Identifying and localising plant organs on herbarium sheets
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is  a  first necessary step  for  some interesting  applications. The  presence  and  state  of

organs, such as leaves, flowers and fruits, can be used in phenological studies over long

time periods and may give us more insight into climate change effects since the time of

the Industrial Revolution (Willis et al. 2017, Lang et al. 2019).

Methods

Network architecture

A  typical  object  detection  network  consists  of  object  localisation  and  classification

integrated  into  one  convolutional  network.  There  are  two  main  types  of  meta-

architectures  available  for  this  application:  single  stage  detectors  like  Single  Shot

Multibox Detectors (SSD) (Liu et al. 2016) and 'You only look once' (YOLO) (Redmon et

al. 2016) and two-stage, region-based CNN detectors, such  as Faster R-CNN. Single

stage detectors use a  single  feed-forward  network to  predict object class probabilities

along with bounding box coordinates on the image. Faster R-CNN is composed of three

modules:  1)  a  deep  CNN  image  feature  extraction  network,  2)  a  Region  Proposal

Network (RPN), used for detection of a predefined number of Regions of Interests (RoIs)

where the object(s) of interest could reside within the image, followed by 3) Fast R-CNN (

Girshick 2015), computes a classification score along with class-specific bounding box

regression for each of these regions. The main reason for choosing Faster R-CNN for

organ detection is because it is generally more accurate, particularly for large and small

objects, than single stage detectors like SSD when speed and memory consumption are

not as important as overall accuracy (Huang et al. 2017). 

The  CNN  feature  extraction  network  used  in  this  paper  is  based  on  the ResNet-50 

architecture (He et al. 2016), without the final fully-connected layer. The Region Proposal

Network (RPN) creates thousands of prior or anchor boxes to  estimate the location of

objects in the image. The anchor boxes are predefined bounding boxes of certain height

and width tiled across the image, determined by their scale and aspect ratios, in order to

capture different sizes of objects of specific classes. The RPN generates these proposals

by adjusting  these  anchors with  coordinate  offsets of the  object bounding  boxes and

predicts the possibility of each anchor being a foreground object or a background. These

proposals are sorted according to their score and top N proposals are selected by Non-

Maximum  Suppression  (NMS),  which  are  then  passed  to  Fast  R-CNN  stage.  NMS

reduces the high number of proposals for the next stage by short-listing the proposals

with  the  highest  score  having  minimum  overlap  with  each  other  by  removing  the

proposals with overlap above a predefined threshold for each category. In the next stage,

the proposals with feature maps of different shapes are pooled with a ROI pooling layer,

which performs max-pooling on the inputs of non-uniform sizes to obtain a fixed number

of  uniform  size  feature  maps.  These  feature  maps  are  propagated  through  fully-

connected layers, which end in two siblings fully-connected layers for object classification

and bounding box regression, respectively. An illustration of Faster R-CNN is shown in

Fig. 1.
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Image Annotation

The herbarium scans annotated for training the object detection network were selected

from  the  MNHN  (Muséum  national  d’Histoire  naturelle)  vascular  plant  herbarium

collection dataset in Paris (Le Bras et al. 2017), from open access images contributed to

the GBIF portal (MNHN and Chagnoux 2020). A total of 653 images were downloaded

and rescaled from their original average size of ca. 5100 by 3500 pixels to 1200 by 800

pixels, in order to preserve the aspect ratio of the scans and to speed up the learning by

reducing  the  number  of  pixels. The  images  were  selected  manually  from  a  large

collection of scans, having minimum visual  overlap between organs, while  covering a

broad range of taxa and morphology (Fig. 2, Suppl. material 2). All  these images were

annotated for six different types of organs (Suppl. material  1) using LabelImg (Tzutalin

2015),  a  Python  graphical  toolkit  for  image  annotation  using  bounding  boxes.  The

average  rate  for  manual  image  annotation  was  8  to  15  herbarium sheets  per  hour,

depending on the difficulty and number of bounding boxes to  be annotated. The total

number of annotated bounding boxes for all 653 images was 19654, with an average of

30.1 bounding boxes per image. From these 653 annotated images, 155 of them were

either  annotated  or  verified  by  an  expert, making  a  validated  subset hence  used  for

testing and the 498 were used for training, as shown in Fig. 3 and Fig. 4 and in more

detail in Table 1.

Preparing  our  data  was  not  always  straight-forward.  The  manual  localisation  and

labelling  of plant organs  from specimens  encountered  the  following  difficulties: buds,

flowers and  fruits  are  different stages emerging  in  the  life  cycle  of plant reproductive

organs and, in some cases, it was therefore difficult to find a clear distinction between

these  structures. In  some  taxa, different plant organs were  impossible  to  separate  as

these  were  small  and  crowded, for example, in  dense  inflorescences with  bracts and

flowers  or  stems  densely  covered  by  leaves.  In  a  few  cases,  it  was  also  hard  to

differentiate from the digital image between roots and stolons or other stem structures. In

all  of  these  cases,  we  placed  our  labelled  boxes  in  a  way  to  best  characterise  the

respective plant organ. Sometimes, this involved including parts of other organs and, at

other times, if sufficient clearly assignable material were available, difficult parts were left

out.

Implementation

The  object recognition  task was performed  using  Faster  R-CNN, as described  in  the

network architecture, with the Feature Pyramid Network (Lin et al. 2017) backbone. The

Feature  Pyramid  Network  increases  the  accuracy  of  the  object  detection  task  by

generating multi-scale feature maps from a single scale feature map of ResNet output, by

making  top-down  pathways  in  addition  to  the  usual  bottom-up  pathways  used  by  a

regular  convolutional  network  for  feature  extraction, where  each  layer  of the  network

represents one pyramid level. The bottom–up pathway increases the semantic value of

the image features, from corners and edges in the initial  layers to detecting high level
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structures  and  shapes  of  objects  in  the  image  in  the  final  layers,  while  reducing  its

resolution  at  each  layer.  The  top-down  pathway  then  reconstructs higher  resolution

layers from the most semantically rich layer, with predictions made independently at all

levels as shown in Fig. 5. This approach provides Faster R-CNN with feature maps at

different resolutions for detecting objects of multiple scales.

In order to reduce the training time and, more importantly, because of the small size of the

training dataset, transfer learning (Yosinski et al. 2014) was implemented to initialise the

model weights pre-trained on the ImageNet dataset (Deng et al. 2009). Since the initial

layers  of  a  CNN  usually  learn  very  generic  features  that  can  also  be  used  in  new

contexts, pre-trained weights can initialise the weights for these layers. For the deeper

layers, transfer learning  is used  to  initialise  the  parameter weights pre-trained  on  the

ImageNet dataset and  then  fine-tuned  during  training, using  the  annotated  herbarium

scan dataset until convergence. 

The  model  was implemented  with  the  Detectron2  (Wu et al. 2019) library in  PyTorch

framework and trained using Stochastic Gradient Descent optimiser with a learning rate

of 0.0025 and momentum of 0.9. The anchor generator in the Region Proposal Network

(see section above on network architecture) had six anchor scales [32, 64, 128, 256, 512,

1024] (square root of area in absolute pixels) each with three aspect ratios of [1:2, 1:1,

2:1]. The thresholds for non-maximum suppression (NMS) were 0.6 for training and 0.25

for testing, respectively. 

Due to the large image size and additional parameters of Faster R-CNN, a minibatch size

of four images per GPU (TITAN Xp) was selected for training the model. The model was

trained  twice, once  with  a  training  subset of 498  images  on  a  single  GPU  for  9000

iterations and performance evaluated on the test subset of 155 images, also on a single

GPU and  then  trained  again  on  all  653  annotated  images on  three  GPUs for  18000

iterations for predicting  plant organs on  another un-annotated  independent dataset to

evaluate our method. This dataset consists of 708 full  scale herbarium scans, with  an 

average size of ca. 9600 by 6500 pixels, from the Herbarium Senckenbergianum (FR) (

Otte et al. 2011) with a different set of species (Fig. 2) and geographical origins, which is

also  available  at GBIF (Senckenberg  2020). The  Python  code  and  the  trained  model

have been made available at GitHub (Younis 2020).

Results

The predictions of the organ detection model provides a list of bounding boxes for each

organ, along with the confidence levels and their class labels. The performance of the

model  was  evaluated  using  the  COCO  evaluation  metric  (Lin  et  al.  2014),  which

determines whether the predicted organs and their locations are correct. The minimum

threshold  chosen  for  any  prediction  to  be  acceptable  is  having  a  confidence  score

(probability) of 0.5. The COCO method calculates average precision (with values from 0

to 100), which is a metric that encapsulates both precision and recall of the detection, for

the  entire  predictions and  each  class of organs at different levels of Intersection  over
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Union  (IoU).  IoU  is  an  evaluation  metric  that  quantifies  the  overlap  of  the  predicted

bounding boxes with the ground-truth bounding boxes. The IoU score ranges from 0 to 1,

the higher the overlap, the higher the IoU score. The evaluation method considers all

predictions as positive that have IoU of at least 0.5 and the average precision at this level

of IoU is called AP50. Similarly, the average precision with  a  minimum IoU of 0.75 is

called AP75, whereas AP is the average over 10 IoU levels from 0.5 to 0.95 with a step

size of 0.05. The precision metrics evaluated on the predicted organs on the test subset

are shown in Table 2. The COCO method also calculates the AP for each category, as

shown  in  Table  3, along  with  the  total  bounding  boxes for  each  category  in  the  test

subset.

From the predicted annotations of the model for plant organs on 708 full scale herbarium

scans  from the  Herbarium Senckenbergianum dataset,  trained  on the  653  annotated

MNHN Paris Herbarium dataset, 203 were manually verified and corrected to evaluate

the  predictions. The organ detection  model  was successfully able  to  detect almost all

plant organs in the majority of scans, as shown by the images in Fig. 6. The dataset of

these 203 herbarium scans, along with the result of detections and the annotations, is

available at PANGAEA Younis et al. 2020.

The performance of the model on the verified annotated Herbarium Senckenbergianum

dataset is shown in Table 4 and Table 5. The average precision on these 203 scans is

generally  higher  than  the  MNHN  Paris  Herbarium test subset,  there  being  two  main

reason for this: 1) The organ detection model for full  scale detection was trained on all

653 images of the  MNHN Paris Herbarium annotated dataset before  detection  on the

Herbarium Senckenbergianum dataset, 2) The annotation of these 203 images from the

Herbarium Senckenbergianum dataset were done, based on the predictions of organs on

scans as shown in Fig. 6.

Discussion

This  paper  presents  a  method  to  detect multiple  types of plant organs on  herbarium

scans. For this research, we annotated hundreds of images with thousands of bounding

boxes by hand for each possible plant organ. A subset of these annotated scans was

then used for training of deep learning for organ detection. After training, the model was

used to predict the type and location of plant organs on the test subset. The automated

detection of plant organs in our study was most successful for leaves and stems (Table 3

 and Table 5). Best AP values for leaves are likely due to the largest set of annotated

bounding  boxes. Good  values for  stems and  roots  may be  explained  by the  relative

uniformity  of  these  organs  throughout  the  plant  kingdom,  as  compared  to  the

morphologically  more  diverse  flowers  and  fruits  in  between  these.  Seeds  are  rarely

visible on herbarium sheets and require more training material.

The model was trained again on all the annotated scans earlier and tested on a different

un-annotated dataset. The model performed well, based on visual inspection. In order to

evaluate the performance of the model with an average precision metric, around 200 of
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these  scans  were  annotated  by  hand, based  on  the  predicted  bounding  boxes. The

predicted bounding boxes dramatically reduced the time to annotate these scans, since

the predictions for leaves and stems were fairly accurate. After being annotated, these

scans  were  compared  with  the  predictions  to  evaluate  the  precision  of  the  organ

detection model on this dataset.

We consider our study as a 'real-life' pioneer study with inherent biases. The training and

test  datasets  from  MNHN  Paris  Herbarium are  from  the  same  collection,  while  the

Herbarium  Senckenbergianum  specimens  are  from  an  independent  collection  with

different geographical  and  taxonomic  focus, but still  with  a  number  of higher  taxa  in

common with MNHN Paris Herbarium. The different datasets overlap mainly on the family

level, partly on genus level and only slightly between the MNHN Paris Herbarium training

and test datasets at species level (Fig. 2, Suppl. material 2). Therefore, we can exclude

organ recognition being based upon species-specific features. As in nature itself and the

collections represented here, families are not represented equally. Likewise, the number

of labelled organs, represented in our dataset, is far from balanced and biased both by

the  natural  distribution  of these  organs  in  the  sampled  taxa  and  by  the  selection  of

material by the collectors. Roots, for example, are mainly represented in Asteraceae and

Orchidaceae, families with many small and herbaceous species (Fig. 4, Suppl. material 3

). In  order to  better understand the difference in  average precision of organ detection 

across different taxa, further  studies are  necessary. A promising  strategy would  be  to

employ data augmentation to create artificially-balanced distributions of organs and taxa

(Shorten  and  Khoshgoftaar 2019). The  current study focuses on  the  analysis and  the

provision  of  annotated  datasets  of  actual  herbarium  specimens,  involving  the

aforementioned constraints rooted in the morphology of the specimens concerned and

not simulated data. It would also be interesting to compare a general organ recognition

with taxon-specific approaches. Especially for fruits and flowers, we have very different

shapes between taxa and also the possible distinction between different developmental

stages depends a lot on the taxon. 

Most computer vision approaches on plants focus on live plants, often in the context of

agriculture or plant breeding and, therefore, include only a limited set of taxa. The present

approach not only targets a much larger group of organisms and morphological diversity,

comparable to applications in citizen science (Wäldchen and Mäder 2019), but can also

be applied on a wider time-scale by including collection objects from hundreds of years

of botanical research. Some significant recent similar approaches to detect plant organs

on herbarium scans are GinJinn (Ott et al. 2020) and LeafMachine (Weaver et al. 2020).

GinJinn  uses  an  object-detection  pipeline  for  automated  feature  extraction  from

herbarium specimens. This pipeline can be used to detect any type of plant organ, which

the  authors  of this  research  demonstrated  by  detecting  leaves  on  a  sample  dataset.

LeafMachine is another approach which tries to automate extraction of leaf traits, such as

class, size and number, from digitised herbarium specimens with machine learning.
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Conclusions

Our present work focuses on the detection of plant organs from specimen images. The

presence of flowers and fruits on specimens is a new source of data for phenological

studies (Willis et al. 2017), interesting in the context of climate change. Presence of roots

would identify plant specimens potentially containing root symbionts, such as mycorrhizal

fungi  or  N-fixing  bacteria,  for  further  study  by  microbiological  or  genetic  methods  (

Heberling and Burke 2019). Up to now, this requires visual examination of the specimens

by humans; however, an automated approach using computer vision would considerably

reduce the effort. Furthermore, the detection and localisation of specific plant organs on a

herbarium  sheet  would  also  enable  or  improve  further  computer-vision  applications,

including  quantitative  approaches,  based  on  counting  these  organs,  improved

recognition of qualitative organ-specific traits, such as leaf shape, as well as quantitative

measures, such as leaf area or fruit size. 

Localisation of plant organs will  improve automated recognition and measurements of

organ-specific traits, by preselecting appropriate training material for these approaches.

The general approach of measuring traits from images instead of the specimen itself has

been shown to be precise, except for very small objects (Borges et al. 2020). Of course,

measurements that involve further processing of plant parts, as often done in traditional

morphological studies on herbarium specimens, are not possible from images. 

Automated  pathogen  detection  on  collection  material  will  also  profit  from  the

segmentation  of  plant  organs  from Herbarium sheet  images,  as  many  pathogens  or

symptoms of a  plant disease  only occur on  specific organs. Studies on  gall  midges (

Veenstra  2012) have  found  herbarium specimens to  be  interesting  study objects and

would potentially profit from computer vision. 

Manual annotation of herbarium specimens with bounding boxes, as done for the training

and  test  datasets  in  this  study,  is  a  rather time-consuming  process.  Verification  and

correction of automatically-annotated specimens is considerably faster, especially if the

error rate is low. By iteratively incorporating expert-verified computer-generated data into

new training datasets, the results can be further improved with reasonable efforts using

Continual Learning (Parisi et al. 2019).
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Figure 1.  

An illustration of the Faster  R-CNN architecture, with ResNet for  image feature extraction,

RPN for generating object proposals and RoI Pooling for creating fixed-size feature maps for

each proposal.
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Figure 2.  

Number  of taxa of different rank for  the three datasets with overlaps at family, genus and

species level. P(Tr), P(Te): MNHN Paris Herbarium training and test datasets, FR: Herbarium

Senckenbergianum dataset.
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Figure 3.  

A column chart showing the number of annotated bounding boxes for each organ. Red: Test

subset, Blue: Training subset.
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Figure 4.  

Families of labelled specimens (ordered by number  of specimens)  with number  of labelled

plant organs. The share of the plant organs differs between families, which may be due to

factors depending on the plant  itself  and collecting habits (season,  selection of  identifiable

specimens).
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Figure 5.  

An illustration of Feature Pyramid Network, where feature maps are indicated by blue outlines

and thicker outlines denote semantically stronger features (Lin et al. 2017).
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a b

c d

Figure 6. 

Sample  results  of  organ  detection  performed  on  unseen  full  scale  Herbarium

Senckenbergianum scans. Colour  scheme for  bounding boxes is;  Leaf:Blue, Flower:Maroon,

Fruit:Magenta, Seed:Yellow, Stem:Green, Root:Grey.
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Category Training subset

(498 images)

Test subset

(155 images)

Complete dataset

(653 images)

Leaf 7886 2051 9937

Flower 3179 763 3942

Fruit 1047 296 1343

Seed 4 6 10

Stem 3323 961 4284

Root 78 60 138

Total 15517 4137 19654

Table 1. 

The number of annotated bounding boxes for each plant organ in training and test subset.
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AP50 AP75 AP

22.8 6.8 9.7

Table 2. 

The precision of the predictions on the MNHN Paris Herbarium test subset with COCO evaluation

method.
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Category Bounding Boxes AP

Leaf 2051 26.5

Flower 763 4.7

Fruit 296 7.8

Seed 6 0.0

Stem 961 9.9

Root 60 9.4

Table 3. 

Average Precision of each type of organ along with the total bounding boxes for each category in

the test subset.
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AP50 AP75 AP

32.1 16.1 16.8

Table 4. 

Result of model evaluation on the Herbarium Senckenbergianum annotated dataset.
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Category Bounding Boxes AP

Leaf 3362 37.9

Flower 1921 18.3

Fruit 183 7.9

Seed 47 0.0

Stem 1063 25.1

Root 117 11.8

Table 5. 

Average Precision of each type of organ along with the total bounding boxes for each category in

the Herbarium Senckenbergianum annotated dataset.
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Supplementary materials

Suppl. material 1: Plant Organ Annotations

Authors:  Sohaib Younis, Marco Schmidt, Claus Weiland

Data type:  XML Files

Brief description:  The zip archive provides annotations for both Herbarium Senckenbergianum

and MNHN Paris Herbarium datasets.

Download file (778.04 kb) 

Suppl. material 2: Specimen List

Authors:  Sohaib Younis, Marco Schmidt

Data type:  CSV File

Brief description:  The file provides a list for  all the specimens, showing their  taxonomy, organ

count and URLs.

Download file (119.27 kb) 

Suppl. material 3: Family organ count

Authors:  Sohaib Younis, Marco Schmidt

Data type:  CSV File

Brief description:  The file provides a list of the total annotated organs for each family.

Download file (2.53 kb) 
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