

Extraction Methods

1.1 RNA Extraction

- 1) **Tissue Homogenization** Transfer an appropriate amount of tissue to a 1.5 mL centrifuge tube containing 1 mL of pre-chilled TRIzol reagent after thorough grinding in liquid nitrogen. Vortex vigorously for complete lysis and incubate at room temperature for 5 minutes. For tissues that are difficult to extract, the incubation time may be extended accordingly.
- 2) **Phase Separation** Following centrifugation at 13,000 g for 5 minutes at 4°C, carefully transfer the supernatant to a fresh centrifuge tube. Add pre-chilled chloroform at a ratio of 0.2 mL chloroform per 1 mL TRIzol (200 µL), vortex thoroughly, and incubate at room temperature for 5 minutes.
- 3) **Aqueous Phase Collection** After centrifugation at 13,000 g for 15 minutes at 4°C, carefully aspirate the upper aqueous phase (400 µL) to a new centrifuge tube, avoiding contact with the intermediate protein layer. Add an equal volume of pre-chilled isopropanol and incubate at room temperature for 10 minutes.
- 4) **RNA Precipitation** Following centrifugation at 13,000 g for 10 minutes at 4°C, discard the supernatant. A small white pellet should be visible at the bottom of the tube (which may not be visible to the naked eye when RNA yield is very low). Add 1 mL of pre-chilled 75% ethanol to resuspend the pellet.
- 5) **Pellet Washing and Drying** After centrifugation at 12,000 g for 5 minutes at 4°C, carefully remove the supernatant using a 1000 µL pipette with 10 µL tips. Briefly centrifuge the tube for a few seconds to collect any residual liquid on the tube walls, then remove all remaining liquid using 10 µL pipette tips. Air-dry the pellet at room temperature for 3-5 minutes. Note: Avoid over-drying as this may impair RNA solubility and potentially cause degradation.
- 6) **RNA Resuspension** Dissolve the RNA pellet in 20-50 µL of sterile 0.1% DEPC-treated water (volume adjusted according to the expected RNA yield).

1.2 DNA Extraction

- 1) Sample Preparation** Add 200 μ L Buffer TL to a 1.5 mL centrifuge tube. Transfer the ground tissue sample (approximately 30 mg) to the tube and mix thoroughly.
- 2) Protease Digestion** Add 25 μ L protease OB and mix well. Incubate at 55°C for 1-3 hours until the solution becomes clear, with thorough mixing every 20 minutes during incubation.
- 3) Supernatant Collection** Centrifuge at 10,000 g for 5 minutes and carefully transfer the supernatant to a fresh 1.5 mL centrifuge tube.
- 4) RNA Digestion** Add 2.5 μ L RNase A, mix thoroughly, and incubate at room temperature for 10 minutes.
- 5) Lysis Buffer Treatment** Add 220 μ L Buffer BL, mix well, and incubate at 70°C for 10 minutes.
- 6) Ethanol Precipitation** Add 200 μ L absolute ethanol and mix thoroughly.
- 7) Column Binding** Transfer the entire mixture to an adsorption column placed in a 2 mL collection tube. Centrifuge at 8,000 g for 1 minute, then discard both the collection tube and flow-through.
- 8) First Wash** Place the adsorption column in a new collection tube and add 500 μ L Buffer HBC. Centrifuge at 8,000 g for 1 minute, then discard the collection tube and flow-through.
- 9) Second Wash** Transfer the adsorption column to a new collection tube and add 700 μ L DNA Wash Buffer (ensure the specified volume of absolute ethanol has been added). Centrifuge at 8,000 g for 1 minute, discard the flow-through, and place the column back in the collection tube.
- 10) Third Wash** Repeat step 9.
- 11) Column Drying and Elution** Centrifuge empty at 13,000 g for 2 minutes. Discard the collection tube and transfer the adsorption column to a new 1.5 mL centrifuge tube (note: tube caps may become detached during high-speed centrifugation). Add 100 μ L pre-warmed Elution Buffer (65°C), incubate for 5 minutes, then centrifuge at 10,000 g for 1 minute.